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Abstract

A new efficient higher order zigzag theory is presented for laminated plates under thermal loading. The third order

zigzag model is modified by replacing the uniform across the thickness approximation for the deflection with a layer-

wise variable approximation for deflection which explicitly accounts for the transverse thermal strain. The thermal field

is approximated as piecewise linear across the sub-layers. The displacement field is expressed in terms of the thermal

field and only five primary displacement variables by satisfying exactly the conditions of zero transverse shear stresses at

the top and the bottom and their continuity at the layer interfaces. The governing equations are derived using the

principle of virtual work. Comparison of Navier solutions for simply-supported rectangular test plate devised for this

study and composite and sandwich plates with the exact three-dimensional thermo-elasticity solutions for two kinds of

thermal loads establishes that the present efficient zigzag theory is generally more accurate than the existing zigzag

theory.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The composite and sandwich structural components used in aerospace, underwater and land based

structures are often subjected to moderate to severe environment or process based thermal loading causing

significant thermal stresses due to thermal gradient across the thickness and due to widely different thermal

properties of the adjacent laminas. These laminated components have excellent strength to weight and

stiffness to weight ratio, but relatively poor strength and stiffness for transverse shear. Hence transverse
shear plays a significant role for the moderately thick and thick laminated structures. Moreover, the layer-

wise material inhomogeneity causes a severe layer-wise distortion of the normal to the mid-surface and it

also gets strained primarily due to the thermal strain. The equivalent single layer (ESL) theories like the
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classical laminate theory (CLT), first order shear deformation theory (FSDT), the third order theories

(TOTs) and higher order theories (HOTs) are inadequate to account for this distortion and violate the shear

stress continuity conditions at the layer interfaces. Tauchert (1991), Noor and Burton (1992), Murakami

(1993), Reddy (1997), Argyris and Tanek (1997) and Carrera (2000) have reviewed plate theories for
thermo-mechanical response. CLT, FSDT and TOTs have been applied to thermal stress analysis of

laminated plates (e.g., Stavsky, 1963; Nemrovskii, 1972; Wu and Tauchert, 1980a,b; Reddy and Hsu, 1980;

Kheider and Reddy, 1991; He, 1995; Locke, 1997). HOTs for thermal loading of laminated plates have been

developed by Jonnalagadda et al. (1993), Kant and Khare (1994), Rohwer et al. (2001) and Patel et al.

(2002). Rohwer et al. (2001) demonstrated that the transverse shear and normal stress components can be

predicted with good accuracy from HOTs using the 3D equilibrium equations for cross-ply layered plates

under assumed linear temperature variation across the thickness.

Finite element analysis based on 3D elasticity equations and quasi-3D finite element analysis based on
discrete layer theories (DLTs) for plates with layer-wise expansions of displacements are more accurate

than the ESL theories, but are computationally expensive for real structural analysis since the number of

displacement variables depend on the number of layers. To overcome this, zigzag theories have been

developed for composite laminates in which the slope discontinuity in the in-plane displacements at the

layer interfaces is introduced through a zigzag function with values of +1 and )1 at successive layer

interfaces (Ali et al., 1999). More consistent efficient zigzag theories have been developed with layer-wise

expansion of displacements in which the number of primary displacement unknowns is reduced to those of

the ESL theory of the same order, by imposing the conditions on the continuity of transverse shear stresses
at the layer interfaces and by also possibly imposing the shear traction-free conditions at the top and the

bottom surfaces. Xioping and Liangxin (1994) developed an efficient third order zigzag model for plates

under thermal loading. Rolfes et al. (1998), Noor and Malik (1999, 2000) and Park and Kim (2002) have

presented various two-step or multi-step predictor–corrector procedures for plates under thermal loading.

Carrera (2002) has presented a variety of displacement-based ESL theories and discrete layer theories, and

also mixed stress and displacement-based discrete layer theories for thermal stress analysis of plates and

assessed them for assumed linear temperature profile across the thickness and an actual temperature profile

based on the heat conduction equation. It was concluded that: (1) the ESLs yield inaccurate results even for
thin plates; (2) the advanced zigzag theories may work well in thick plates loaded by assumed linear

temperature profile but yield inaccurate results for actual temperature profile based on the heat conduction

equation; (3) at least a quadratic layer-wise variation of deflection w with z is required to capture even the

linear thermal strain in the thickness direction. Exact thermo-elasticity solutions (Tungikar and Rao, 1994)

reveal that the non-uniformity in the deflection across the thickness, primarily due to the thermal strain, has

enormous bearing on the results. Except for the DLTs in which layer-wise expansion is taken for w, no
other available theory includes the transverse thermal strain. Kapuria et al. (2003) have recently presented

an accurate and efficient higher order zigzag theory for thermal stress analysis of laminated beams using a
variable approximation for deflection across the thickness which, for the first time, explicitly accounts for

the transverse thermal strain.

An efficient 2D higher order zigzag theory is developed in this work for thermal stress analysis of

composite and sandwich plates, in line with the higher order zigzag theory of Kapuria et al. (2003) for

beams, with modification of the existing zigzag thermal model (Xioping and Liangxin, 1994) for plates by

choosing an approximation of the transverse displacement w which accounts for the transverse thermal

strain due to thermal expansion coefficient a3. The axial displacements are approximated as a combination

of a global third order variation across the thickness with an additional layer-wise linear variation. The
thermal field is approximated sub-layer-wise as piecewise linear. The displacement field is expressed in terms

of only five primary displacement variables and the thermal field by satisfying exactly the conditions of zero

transverse shear stresses at the top and the bottom surface of the plate and their continuity at the layer

interfaces. The equilibrium equations and the boundary conditions are derived using the principle of virtual
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work. This theory is computationally efficient as the number of primary displacement unknowns is the same

as in the FSDT. Analytical Fourier series solutions are obtained for the response of simply-supported plates

under thermal loads. The existing zigzag theory (ZIGT) of Xioping and Liangxin (1994) for plates is ob-

tained as a particular case of the present theory by setting a3 ¼ 0 for all the layers. The present higher order
zigzag theory (HZIGT) is assessed by comparison with the exact 3D thermo-elasticity, the existing zigzag

theory (ZIGT) and the FSDT solutions. Numerical results for the displacements and the stresses for a

benchmark test plate devised for this study, composite symmetric and anti-symmetric cross-ply laminated

plates and sandwich plates establish that the present HZIGT is much superior to the FSDT and ZIGT.
2. Approximation of displacement fields

Consider a cross-ply composite or sandwich plate (Fig. 1) made of L perfectly bonded orthotropic plies

of total thickness h with the mid-plane chosen as the xy-plane with z ¼ z0 ¼ �h=2 as the bottom surface and

z ¼ zL ¼ h=2 as the top surface. The kth ply from the bottom has bottom surface at z ¼ zk�1. The reference

plane z ¼ 0 either passes through or is the bottom surface of the k0th layer. Let ux; uy ;w be the in-plane and

transverse displacements. Denoting differentiation by a subscript comma, the strain–displacement relations

are:
ex ¼ ux;x; ey ¼ uy;y ; ez ¼ w;z; cxy ¼ ux;y þ uy;x; cyz ¼ uy;z þ w;y ; czx ¼ ux;z þ w;x: ð1Þ
For the temperature rise h, assuming transverse normal stress rz ’ 0, the linear constitutive equations

for the stresses r; s are expressed as
r ¼ Qe � �bh; s ¼ bQc; ð2Þ
Fig. 1. Geometry of a laminated plate.
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where
r ¼
rx
ry
sxy

24 35; s ¼ szx
syz

� �
; e ¼

ex
ey
cxy

24 35; c ¼ czx
cyz

� �
; ð3Þ

Q ¼
Q11 Q12 0

Q12 Q22 0

0 0 Q66

24 35; bQ ¼ Q55 0

0 Q44

� �
; �b ¼

�b1
�b2

0

24 35; ð4Þ
where Qij are the reduced elastic stiffness and �bi are the stress–temperature coefficients.

The temperature field hðx; y; zÞ for the plate can be solved analytically for some geometries or by the finite

element method. For the 2D model developed herein, h is approximated as piecewise linear across the

thickness, in terms of its values at nh points at zlh; l ¼ 1; 2; . . . ; nh with z1h ¼ z0; z
nh
h ¼ zL:
hðx; y; zÞ ¼ Wl
hðzÞh

lðx; yÞ; ð5Þ
where hlðx; yÞ ¼ hðx; y; zlhÞ. Wl
hðzÞ are linear interpolation functions and summation convention is used for

the index l. nh can differ from L with nh P L. Each layer is divided into sub-layers for discretisation of h
whose number is determined by the required accuracy. The functional form of hlðx; yÞ will depend on the

boundary conditions.

Three-dimensional thermo-elasticity exact solutions (Tungikar and Rao, 1994) reveal that for moder-

ately thick plates under thermal load, the deflection w has significant variation across the thickness due to

the much greater thermal contribution to ez compared to the negligible contribution of the stresses rx, ry , rz.
Hence, herein w is approximated by integrating the constitutive equation for ez by including only the

thermal contribution
wðx; y; zÞ ¼ w0ðx; yÞ þ W
l
hðzÞh

lðx; yÞ; ð6Þ

where W

l
hðzÞ ¼

R z
0
a3W

l
hðzÞdz is a piecewise quadratic function. For the kth layer, ux, uy are approximated

across the thickness as a combination of a third-order variation in z and a layer-wise linear variation:
uðx; y; zÞ ¼ ukðx; yÞ � zw0d ðx; yÞ þ zwkðx; yÞ þ z2nðx; yÞ þ z3gðx; yÞ; ð7Þ

u ¼ ux
uy

� �
; w0d ¼

w0;x

w0;y

� �
; uk ¼

ukx
uky

� �
; wk ¼

wkx
wky

� �
; n ¼ nx

ny

� �
; g ¼ gx

gy

� �
: ð8Þ
uk and wk denote the translation and rotation variables of the kth layer.

Substituting ux; uy ;w from Eqs. (7) and (6), and h from Eq. (5) into Eq. (1) and using Eq. (2) yields s:
s ¼ bQk½wk þ 2zn þ 3z2g þ W
l
hðzÞh

l
d �; ð9Þ
where hld ¼ ½hl;x hl;y �
T
. For the k0th layer, denote u0ðx; yÞ ¼ uk0ðx; yÞ ¼ uðx; y; 0Þ, w0ðx; yÞ ¼ wk0ðx; yÞ. The

functions uk, wk, n, g are expressed in terms of u0 and w0 using the ðL� 1Þ conditions each for the continuity

of s and u at the layer interfaces and the two shear traction-free conditions s ¼ 0 at the top and the bottom

surfaces at z ¼ z0, zL. The continuity condition of s at the interface z ¼ zi�1 between the layers i and i� 1 is

expressed in the following recursive form so that the solution of wi, n, g is easily tractable:
bQi½wi þ 2zin þ 3z2i g� þ bQiW
l
hðziÞh

l
d

¼ bQi�1½wi�1 þ 2zi�1n þ 3z2i�1g� þ bQi�1W
l
hðzi�1Þhld þ 2bQiðzi � zi�1Þn

þ 3bQiðz2i � z2i�1Þg þ bQi½Wl
hðziÞ � W

l
hðzi�1Þ�hld : ð10Þ
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Using Eq. (9), the shear traction-free condition sðx; y; z0Þ ¼ 0, can also be written in the above pattern as
Table

Effect

Plat

(a)

(b)

(c)

(d)
bQ1½w1 þ 2z1n þ 3z21g� þ bQ1W
l
hðz1Þh

l
d ¼ 2bQ1ðz1 � z0Þn þ 3bQ1ðz21 � z20Þg þ bQ1½Wl

hðz1Þ � W
l
hðz0Þ�h

l
d : ð11Þ
Adding Eqs. (11) and (10) for i ¼ 2; 3; . . . ; k yields
bQkðwk þ 2zkn þ 3z2kgÞ þ bQkW
l
hðzkÞh

l
d ¼ 2Ck1n þ 6Ck2g þ Ck3lh

l
d ; k ¼ 2; . . . ; L; ð12Þ
1

of SCFs on % error of FSDT for plates with S ¼ 10; b=a ¼ 1

e Load Entity SCFs Entity SCFs Entity SCFs

5/6 Whitney 5/6 Whitney 5/6 Whitney

1 �wð0:5Þ )72.26 )75.42 rxð0:5Þ )58.30 )56.53 ryð0þÞ 7.89 7.96

2 �wð0Þ )15.85 )1.08 rxð0:5Þ )13.07 )17.88 ryð0:2�Þ )1.19 )4.45

1 �wð0:5Þ )100.0 )100.0 rxð0:5Þ )10.55 )10.55 ryð�0:25þÞ )7.63 )7.63
2 �wð0Þ )0.14 4.67 rxð0:5Þ )10.38 )12.78 ryð�0:25þÞ 4.57 11.35

1 �wð0:5Þ )100.0 )100.0 rxð0:5Þ )25.54 )34.07 ryð�0:5Þ )25.54 )34.07
2 �wð0Þ )1.89 )1.89 rxð0:5Þ )4.61 )4.61 ryð0:5Þ 1.54 1.54

1 �wð0:5Þ )100.0 )100.0 rxð�0:5Þ 3.92 3.92 ryð�0:45þÞ 3.19 3.19

2 �wð0Þ 4.72 3.55 rxð0:45�Þ )0.02 0.08 ryð0:5Þ 0.09 )0.02

Fig. 2. Temperature distribution for square plates (a), (b) and (d) under load cases 1 and 2.
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Ck1 ¼
Xk
i¼1

bQiðzi � zi�1Þ; Ck2 ¼
Xk
i¼1

bQiðz2i � z2i�1Þ=2; Ck3l ¼
Xk
i¼1

bQi½Wl
hðziÞ � W

l
hðzi�1Þ�: ð13Þ
Using Eq. (9), the condition szxðx; y; zLÞ ¼ 0, can be written as
bQL½wL þ 2zLn þ 3z2Lg� þ bQLW
l
hðzLÞh

l
d ¼ 0: ð14Þ
Eliminating wL from Eqs. (14) and (12) for k ¼ L, and rewriting Eq. (11) yields
2CL1n þ 6CL2g ¼ �CL3lh
l
d ; 2z0n þ 3z20g ¼ Cl5h

l
d � w1; ð15Þ
where Cl5 ¼ �W
l
hðz0Þ and I2 is a 2 · 2 identity matrix. The solution of Eq. (15) for n; g is
n ¼ R3w1 þ Rl5h
l
d ; g ¼ R4w1 þ Rl6h

l
d ; ð16Þ
where
D ¼ 4z20C
L
1 � 8z0CL2 ; R3 ¼ 4D�1CL2 ; R4 ¼ �4D�1CL1=3;

Rl5 ¼ �D�1ð2z20CL3l þ 4CL2C
l
5Þ; Rl6 ¼ D�1ð4z0CL3l þ 4CL1C

l
5Þ=3:

ð17Þ
Substituting n; g from Eq. (16) into Eq. (12) yields
wk ¼ Rk2w1 þ Rkl1h
l
d ; ð18Þ
Fig. 3. Distributions of �v, �w, ry , syz for square test plate (a) under load case 1.
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where
Rk2 ¼ ak1R3 þ ak2R4; Rkl1 ¼ ak1R
l
5 þ ak2Rl6 þ ðbQkÞ�1Ck3l � W

l
hðzkÞI2;

ak1 ¼ 2½ðbQkÞ�1Ck1 � zkI2�; ak2 ¼ 3½2ðbQkÞ�1Ck2 � z2kI2�:
ð19Þ
Using Eq. (7), continuity of u between the layers i and i� 1 ) ui þ zi�1wi ¼ ui�1 þ zi�1wi�1 and using Eq.

(18):
ui ¼ ui�1 þ zi�1½ðRi�1
2 � Ri2Þw1 þ ðRi�1

l1 � Ril1Þh
l
d �; i ¼ 2; . . . ; L: ð20Þ
Adding Eq. (20) for i ¼ 2 to k yields uk in terms of u1:
uk ¼ u1 þ R
k
2w1 þ R

k
l1h

l
d ; ð21Þ
R
k
2 ¼

Xk
i¼2

zi�1ðRi�1
2 � Ri2Þ; R

k
l1 ¼

Xk
i¼2

zi�1ðRi�1
l1 � Ril1Þ: ð22Þ
Eqs. (21) and (18) yield for the k0th layer:
u0ðx; yÞ ¼ uk0ðx; yÞ ¼ u1 þ R
k0
2 w1 þ R

k0
l1h

l
d ; w0ðx; yÞ ¼ wk0ðx; yÞ ¼ Rk02 w1 þ R

k0
l1h

l
d : ð23Þ
Substituting n, g from Eq. (16), uk from Eq. (21) with u1 from Eq. (23)1 and wk from Eq. (18) in Eq. (7)

yields
Fig. 4. Distributions of �v, �w, ry , szx for square composite plate (b) under load case 1.
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uðx; y; zÞ ¼ u0ðx; yÞ � zw0d ðx; yÞ þ RkðzÞw1ðx; yÞ þ RlkhðzÞh
l
dðx; yÞ; ð24Þ
where
RkðzÞ ¼ Rk1 þ zRk2 þ z2R3 þ z3R4; RlkhðzÞ ¼ Rkl1 þ zRkl1 þ z2Rl5 þ z3Rl6;

Rk1 ¼ R
k
2 � R

k0
2 ; Rkl1 ¼ R

k
l1 � R

k0
l1:

ð25Þ
Substituting w1 in terms of w0 from Eq. (23)2 into Eq. (24) yields the expression of u as
uðx; y; zÞ ¼ u0ðx; yÞ � zw0d ðx; yÞ þ RkðzÞw0ðx; yÞ þ R
klðzÞhldðx; yÞ; ð26Þ
where
RkðzÞ ¼ RkðzÞðRk02 Þ
�1 ¼ R̂k1 þ zR̂k2 þ z2R̂3 þ z3R̂4;

R
klðzÞ ¼ RlkhðzÞ � RkðzÞR

k0
l1 ¼ bRkl1 þ zbRkl1 þ z2bRl5 þ z3bRl6;

ðbRk1; bRk2; bR3; bR4Þ ¼ ðRk1;Rk2;R3;R4ÞðRk02 Þ
�1
;bRkl1 ¼ Rkl1 � bRk1Rk0l1; bRkl1 ¼ Rkl1 � bRk2Rk0l1; bRl5 ¼ Rl5 � bR3R

k0
l1;

bRl6 ¼ Rl6 � bR4R
k0
l1:

ð27Þ
Rk, Rkl are diagonal matrices. Thus w, u are related to the the primary variables u0, w0, w0 and hl by Eqs. (6)

and (26). The number of the mechanical primary variables is five which is the same as in the FSDT and the

TOT. Since rz has been neglected in the present formulation, like most other 2D theories including FSDT

and TOT, the condition of continuity of rz at the layer interfaces is not satisfied.
Fig. 5. Distributions of �u, �w, rx, szx for square composite plate (c) under load case 1.
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3. Governing equations of HZIGT

Let A be the surface area of the plate. Denoting h� � �i ¼
PL

k¼1

R z�k
zþ
k�1

ð. . .Þdz, the principle of virtual work

can be expressed as
Z
A
½hrx dex þ ry dey þ sxy dcxy þ syz dcyz þ szx dczx�dA�

Z
CL

hrn dun þ sns dus þ snz dwids ¼ 0 ð28Þ
8du0; dw0; dw0. CL is the boundary curve of the mid-plane of the plate with normal n, tangent s and enclosed

area A. This variational equation is expressed in terms of du0, dw0, dw0 and the stress resultants to yield

equilibrium equations and boundary conditions. The stress resultants N , M , P , Q, V are defined by
N ¼ ½Nx Ny Nxy �T; M ¼ ½Mx My Mxy �T; P ¼ ½ Px Pyx Pxy Py �T;
Q ¼ ½Qx Qy �T; V ¼ ½ Vx Vy �T; ð29Þ

F1 ¼ ½NT MT PT �T ¼ ½hf Tri�; ½Q; V � ¼ Rk
T

;z ðzÞ; I2
h i

s
D E

; ð30Þ
where f ¼ ½I3 zI3 Uk�, In is a n� n identity matrix and
Uk ¼
Rk11 0 0 0

0 0 0 Rk22
0 Rk11 Rk22 0

24 35: ð31Þ
Fig. 6. Distributions of �v, �w, ry , syz for square sandwich plate (d) under load case 1.
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It can be shown that the elements of Rk, N , M ; P transform as second order tensors and the elements of

V , Q transform as vectors for the coplanar axes x, y and n, s.
Using expressions of w, u from Eqs. (6), (26) and using Eq. (30), the area integral in Eq. (28) becomes
Z

A
d�eT1 F1
h

þ d�eT2Q
i
dA; ð32Þ
where
�e1 ¼ ½ u0x;x u0y ;y u0x;y þ u0y ;x �w0;xx �w0;yy �2w0;xy w0x;x w0x;y w0y ;x w0y ;y �
T
;

�e2 ¼ ½w0x
w0y �

T
:

ð33Þ
Using Eq. (26), the relation for the components n, s can be expressed as
dun
dus

� �
¼ du0n

du0s

� �
� z dw0;n

dw0;s

� �
þ Rknn Rkns

Rksn Rkss

� �
dw0n

dw0s

� �
þ Rklnn Rklns

Rklsn Rklss

� �
dhl;n
dhl;s

" #
: ð34Þ
Using the expressions of w, u from Eqs. (6), (26) and the stress resultant components for axes n, s defined
analogous to Eq. (30), the line integral in Eq. (28) can be expressed, using Eq. (34), as
Z

CL

½Nn du0n þ Nns du0s �Mn dw0;n þ ðVn þMns;sÞdw0 þ Pn dw0n
þ Pns dw0s

�dsþ
X
i

DMnsðsiÞdw0ðsiÞ ¼ 0;

ð35Þ

where the lateral surface has corners at s ¼ si.
Fig. 7. Distributions of �v, �w, ry , syz for square test plate (a) under load case 2.
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The area integral in Eq. (32) is expressed in terms of du0x , du0y , dw0, dw0x
, dw0y

by using Green’s theorem

if required, and the terms involving du0x , du0y , dw0x
, dw0y

, dw0;x, dw0;y in the integrand of CL are expressed in

terms of the components n, s. The details are omitted. Thus Eq. (28) yields the following five equations of

equilibrium:
� Nx;x � Nxy;y ¼ 0; �Nxy;x � Ny;y ¼ 0; �Mx;xx � 2Mxy;xy �My;yy ¼ 0;

� Px;x � Pyx;y þ Qx ¼ 0; �Pxy;x � Py;y þ Qy ¼ 0; ð36Þ
The boundary conditions on CL are the prescribed values of one of the factors of each of the following

products:
u0nNn; u0sNns; w0ðVn þMns;sÞ; w0;nMn; w0n
Pn; w0s

Pns; and at si : w0ðsiÞDMnsðsiÞ: ð37Þ
The relations between the resultants F1; F2 with �e1;�e2 are obtained by substituting the expressions of r; s
into Eq. (30):
F1 ¼ A�e1 þ Alhldd � clhl; Q ¼ A�e2 þ A
l
hld ; ð38Þ
where hldd ¼ hl;xx hl;xy hl;yx hl;yy

h iT
and the plate stiffness A½10� 10�;A½2� 2�; the plate thermo-mechanical

coefficients Al½10� 4�;Al½2� 2�; cl½10� 1� are defined in terms of the material constants by
½A;Al� ¼ hf TðzÞQ½f ðzÞ;UklðzÞ�i; cl ¼ hf TðzÞ�bWl
hðzÞi; ½A;Al� ¼ Rk

T

;z ðzÞbQ Rk
T

;z ;C
klðzÞ

h iD E
; ð39Þ
Fig. 8. Distributions of �u, �w, ry , syz for square composite plate (b) under load case 2.
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with
U
kl ¼

R
kl
11 0 0 0

0 0 0 R
kl
22

0 R
kl
11 R

kl
22 0

264
375; CklðzÞ ¼ R

kl
;z ðzÞ þ W

l
hðzÞI2; ð40Þ
A ¼

A11 A12 . . . A1;10

A21 A22 . . . A2;10

..

. ..
. ..

. ..
.

A10;1 A10;2 . . . A10;10

26664
37775 ¼ AT; Al ¼

Al11 Al12 Al13 Al14
Al21 Al22 Al23 Al24
..
. ..

. ..
.

Al10;1 Al10;2 Al10;3 Al10;4

26664
37775; cl ¼

cl1
cl2
..
.

cl10

26664
37775; ð41Þ
A ¼ A11 A12

A21 A22

� �
¼ A

T
; A

l ¼ A
l
11 A

l
12

A
l
21 A

l
22

" #
: ð42Þ
Substitution of the expressions of the resultants from Eq. (38) into Eq. (36), yields the following equi-
librium equations in terms of U ¼ ½u0x u0y w0 w0x

w0y
�T, taking into account the zero elements of

A;A;Al;A
l
:

LU ¼ P ; ð43Þ
where P ¼ ½P1 P2 P3 P4 P5�T. L is differential operator matrix with Lip ¼ Lpi and
Fig. 9. Distributions of �u, �w, rx, szx for square composite plate (c) under load case 2.
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L11 ¼ �A11ð Þ;xx � A33ð Þ;yy ; L12 ¼ �ðA12 þ A33Þð Þ;xy ;
L13 ¼ A14ð Þ;xxx þ ðA15 þ 2A36Þð Þ;xyy ; L14 ¼ �A17ð Þ;xx � A38ð Þ;yy ;
L15 ¼ �ðA1;10 þ A39Þð Þ;xy ; L22 ¼ �A22ð Þ;yy � A33ð Þ;xx;
L23 ¼ ðA24 þ 2A36Þð Þ;xxy þ A25ð Þ;yyy ;
L24 ¼ �ðA27 þ A38Þð Þ;xy ; L25 ¼ �A39ð Þ;xx � A2;10ð Þ;yy ;
L33 ¼ �A44ð Þ;xxxx � ðA45 þ A54 þ 4A66Þð Þ;xxyy � A55ð Þ;yyyy ;
L34 ¼ A47ð Þ;xxx þ ðA57 þ 2A68Þð Þ;xyy ; L35 ¼ ðA4;10 þ 2A69Þð Þ;xxy þ A5;10ð Þ;yyy ;
L44 ¼ A11 � A77ð Þ;xx � A88ð Þ;yy ; L45 ¼ �ðA7;10 þ A89Þð Þ;xy ;
L55 ¼ A22 � A10;10ð Þ;yy � A99ð Þ;xx;

ð44Þ

P1 ¼ Al11h
l
;xxx þ ðAl14 þ Al32 þ Al33Þh

l
;xyy � cl1h

l
;x;

P2 ¼ ðAl21 þ Al32 þ Al33Þh
l
;xxy þ Al24h

l
;yyy � cl2h

l
;y ;

P3 ¼ �Al41h
l
;xxxx � ðAl44 þ Al51 þ 2Al62 þ 2Al63Þh

l
;xxyy � Al54h

l
;yyyy þ cl4h

l
;xx þ cl5h

l
;yy ;

P4 ¼ Al71h
l
;xxx þ ðAl74 þ Al82 þ Al83Þh

l
;xyy � ðcl7 þ A

l
11Þh

l
;x;

P5 ¼ ðAl92 þ Al93 þ Al10;1Þh
l
;xxy þ Al10;4h

l
;yyy � ðcl10 þ A

l
22Þh

l
;y :

ð45Þ
Fig. 10. Distributions of �v, �w, ry , syz for square sandwich plate (d) under load case 2.
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To assess the theory developed herein, by comparison with the 3D exact thermo-elasticity solution,

analytical Navier solution is obtained for simply-supported rectangular plates of sides a; b along the axes

x; y for the boundary conditions
at x ¼ 0; a : Nx; u0y ;w0;Mx; Px;w0y
¼ 0; at y ¼ 0; b : Ny ; u0x ;w0;My ; Py ;w0x

¼ 0: ð46Þ
The solution is expanded as:
w0 hl

u0x w0x

u0y w0y

24 35 ¼
X1
n¼1

X1
m¼1

½w0 hl �nm sinðnpx=aÞ sinðmpy=bÞ
½ u0x w0x �nm cosðnpx=aÞ sinðmpy=bÞ
½ u0y w0y �nm sinðnpx=aÞ cosðmpy=bÞ

24 35:

Eq. (43) yield algebraic equations for n;mth Fourier component. These are not listed for brevity. s can be

obtained using Eq. (2)2 or more accurately by integrating the 3D equations of equilibrium. All transverse

stresses in the present study have been computed using the 3D equilibrium equations.
4. Numerical results and assessment

The accuracy of the present theory is assessed by comparison with the exact 3D thermo-elasticity
solution (Tungikar and Rao, 1994). The results are also compared with the existing zigzag theory and

FSDT in order to assess its improvement over these theories. The shear correction factor for the FSDT

solution is taken as 5=6. Four highly inhomogeneous simply-supported plates (a), (b), (c) and (d) are
Fig. 11. Distributions of �v, �w, ry , szx for rectangular (b=a ¼ 2) composite plate (b) under load case 1.
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selected for the numerical study. The stacking order is mentioned from the bottom. The 5-ply plate (a),

which has been devised as a benchmark test case, has plies of thickness 0:1h=0:25h=0:15h=0:2h=0:3h of

materials 1=2=3=3=3 with orientations hk as [0�/0�/0�/90�/0�], which have highly inhomogeneous properties

for stiffness in tension and shear as in Averill and Yip (1996) and highly inhomogeneous coefficients of
thermal expansion and thermal conductivities. Plates (b) and (c) are graphite-epoxy cross-ply composite

plates of material 4 (Xu et al., 1995), consisting of four plies of equal thickness 0:25h with symmetric [0�/
90�/90�/0�] and anti-symmetric [90�/0�/90�/0�] lay-ups, respectively. The 5-layer sandwich plate (d) has

graphite-epoxy faces [0�/90�] and a soft core (Noor and Burton, 1994) with thickness 0:05h=0:05h=0:8h=
0:05h=0:05h. The material properties of materials 1–4 and of the face and the core of the sandwich plate are:

½ðYL; YT ;GLT ;GTT Þ; mLT ; mTT ; ðaL; aT Þ; ðkL; kT Þ� ¼
Material 1: ½ð6:9; 6:9; 1:38; 1:38Þ GPa; 0:25; 0:25; ð35:6; 35:6Þ � 10�6 K�1; ð0:12; 0:12Þ Wm�1K�1�.
Material 2: ½ð224:25; 6:9; 56:58; 1:38Þ GPa; 0:25; 0:25; ð0:25; 35:6Þ � 10�6 K�1; ð7:2; 1:44Þ Wm�1K�1�.
Material 3: ½ð172:5; 6:9; 3:45; 1:38Þ GPa; 0:25; 0:25; ð0:57; 35:6Þ � 10�6 K�1; ð1:92; 0:96Þ Wm�1K�1�.
Material 4: ½ð181; 10:3; 7:17; 2:87Þ GPa; 0:28; 0:33; ð0:02; 22:5Þ � 10�6 K�1; ð1:5; 0:5Þ Wm�1 K�1�.
Face: ½ð131:1; 6:9; 3:588; 2:3322Þ GPa; 0:32; 0:49; ð0:0225; 22:5Þ � 10�6 K�1; ð1:5; 0:5Þ Wm�1K�1�.
For the core: ½ðY1; Y2; Y3;G12;G23;G31Þ; m12; m13; m23� ¼ ½ð0:2208; 0:2001; 2760; 16:56; 455:4; 545:1Þ MPa,
0:99; 3� 10�5; 3� 10�5�; ai ¼ 30:6� 10�6 K�1; ki ¼ 3:0 Wm�1K�1,

where L and T denote directions parallel and transverse to the fibres, mLT is Poisson’s ratio for strain in the T
direction under uniaxial normal stress in the L direction, and kL; kT ; ki are the thermal conductivity coef-
ficients.
Fig. 12. Distributions of �u, �w, ry , syz for rectangular (b=a ¼ 2) composite plate (b) under load case 2.
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Two thermal load cases are considered.

1. Equal temperature rise of the bottom and the top surfaces of the plate with sinusoidal variation:

hðx;�h=2Þ ¼ T0 sinðpx=aÞ sinðpy=bÞ.
2. Equal rise and fall of temperature of the top and bottom surfaces of the plate with sinusoidal variation:

hðx; h=2Þ ¼ �hðx;�h=2Þ ¼ T0 sinðpx=aÞ sinðpy=bÞ.

For the symmetric laminate, case 1 corresponds to thermal stretching problem with no deflection of the

mid-plane and case 2 corresponds to thermal bending problem. The results are non-dimensionalised as

follows with S ¼ a=h and with the respective values of YT and aT for plates (a), (b), (c) and those of the face

material for plate (d):
ð�u;�v; �wÞ ¼ 100ðux; uy ;w=SÞ=aT ShT0; ðrx; ryÞ ¼ ðrx; ryÞ=aT YT T0;
ðsyz; szx; rzÞ ¼ ðsyz; szx; SrzÞS=aT YT T0; T ¼ T=T0:
The 3D thermal problem is solved exactly by exact analytical solution of the heat conduction equation

for all the layers and exact satisfaction of the thermal boundary conditions at the top, bottom and four

sides, and the continuity conditions at the layer interfaces for temperature and heat flow. The distributions

of temperature across the thickness, for the two thermal load cases are given in Fig. 2. These cover a wide

range of temperature profiles with large discontinuities in its slope at the layer interfaces in some cases and

constitute ideal lay-ups and thermal load cases for assessment of 2D theories. The benchmark test plate (a),
Fig. 13. Distributions of rz for square plates (a), (b) and (d) under load case 1.
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devised for this study, does indeed simulate the case of highly non-linear temperature distribution with

large discontinuities in its slope. For the present zigzag theory (HZIGT), each layer is divided into r sub-
layers for the discretisation of the temperature field across the thickness. Hence, for a plate of L plies, the

number nh of interpolation points in Eq. (5) equals rLþ 1. The values of hlðx; yÞ used in Eq. (5) for
piecewise linear discretisation of h are obtained from the values hl of the 3D analytical thermal solution at

these nh interpolation points, i.e., hlðx; yÞ ¼ hl sinðpx=aÞ sinðpy=bÞ. Convergence studies have revealed that

accurate results are obtained by approximating the exact temperature distributions across the thickness by

sub-layer-wise linear distributions with eight equal sub-layers in the core of sandwich plate and four equal

sub-layers in each ply for all other layers. As mentioned in the introduction, the ZIGT results are obtained

from the formulation of HZIGT by setting a3 ¼ 0 for all the layers.

The accuracy of FSDT depends on shear correction factors (SCFs). The deflection and the inplane

stresses in the middle cross-section, at locations across the thickness where these are large, are computed
with a constant SCF of 5=6 and with lay-up dependent values according to the method suggested by

Whitney (1973). The % errors with respect to the exact 3D solution are compared in Table 1 for square

plates (a), (b), (c), (d) with S ¼ 10. Non-dimensional coordinate z=h are used for tabulating the results. It is

observed that except for a very few cases, the FSDT results with the constant SCF of 5=6 are either identical
to or better than the results with the lay-up dependent SCFs. Hence all subsequent results for FSDT have

been reported with the constant SCF of 5=6.
The thickness distributions of �v, syz at the end and of �w, ry at the centre, obtained by the present zigzag

theory (HZIGT), are compared with the exact 2D thermo-elasticity solution and the existing zigzag theory
(ZIGT) in Fig. 3 for thermal load case 1 for thick ðS ¼ 5Þ and moderately thick ðS ¼ 10Þ square test plate
Fig. 14. Distributions of rz for square plates (a), (b) and (d) under load case 2.
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(a). Similar results for stresses and displacements for square plates (b), (c), (d) for load case 1 are presented

in Figs. 4–6, respectively. The results for the four square plates for load case 2 are compared in Figs. 7–10.

The results for the rectangular plate (b) with b=a ¼ 2 are compared in Figs. 11 and 12 for the two load

cases. The distributions of inplane displacements �u, �v for the present HZIGT and ZIGT for plates (a), (b),
(c) under thermal load 1, have large errors in some layers for S ¼ 5; 10, with the errors decreasing with the

increase in S but the HZIGT distributions are superior to the ZIGT distributions. The HZIGT distributions

of �v in Fig. 6 for the sandwich plates (d) under thermal load 1 are very accurate, whereas the ZIGT dis-

tributions have large qualitative and quantitative errors. The corresponding errors in the distributions of

inplane displacements �u;�v for thermal load 2 in Figs. 7–10 and 12, for both HZIGT and ZIGT, are rela-

tively much smaller compared to load case 1.

The distributions of the transverse displacement �w across the thickness for the present HZIGT are in

excellent qualitative agreement with the exact 3D thermo-elasticity solution for all the plates with S ¼ 10; 5
in both load cases, with small quantitative error for the central deflection. The uniform distributions of �w
for the existing ZIGT are highly erroneous for all the cases. The �w distributions of the present HZIGT in

both the load cases have the least error for the sandwich plate (d), while the maximum error in load case 1 is

for the symmetric composite plate (b) and in load case 2 it is for the anti-symmetric composite plate (c).
Table 2

Exact results and % error of HZIGT, ZIGT and FSDT for square plate (a)

S Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT

5 �wð�0:5hÞ )1.58020 )20.96 )111.30 )115.79 �wð0Þ 1.30610 )6.08 1.65 )36.97
10 )0.39888 )25.70 )142.07 )153.67 1.07840 )2.01 0.75 )15.85
20 0.02587 108.08 595.09 655.29 0.98267 )0.55 0.30 )4.85
40 0.14609 4.91 26.95 29.83 0.95470 )0.14 0.08 )1.29

5 �wð0:5hÞ 2.33110 )20.51 )92.34 )89.30 �wð0:5hÞ 2.84540 )12.00 )53.34 )71.07
10 0.77178 )18.16 )78.26 )72.26 1.48500 )6.11 )26.84 )38.89
20 0.33507 )10.77 )46.34 )41.69 1.08720 )2.22 )9.37 )14.00
40 0.22452 )4.04 )17.40 )15.52 0.98096 )0.62 )2.60 )3.93

5 rxð0:5hÞ 0.67988 )0.07 )77.92 )83.70 rxð0:5hÞ 0.89136 1.80 )34.77 )41.80
10 0.34409 )6.54 )53.11 )58.30 0.80366 )0.83 )12.06 )13.07
20 0.19963 )4.12 )25.53 )28.37 0.78489 )0.33 )3.31 )3.40
40 0.15644 )1.44 )8.39 )9.36 0.78101 )0.09 )0.85 )0.86

5 ryð0þÞ 1.33650 18.20 29.24 30.30 ryð0:2h�Þ 1.35310 2.52 3.35 1.05

10 1.88250 4.80 7.25 7.89 1.19680 1.22 1.86 )1.19
20 2.08710 1.23 1.83 2.03 1.12410 0.39 0.61 )0.54
40 2.14520 0.31 0.46 0.51 1.10200 0.10 0.16 )0.16

5 sxyð�0:4hþÞ )1.15700 )15.42 )33.21 )39.29 sxyð�0:4hþÞ 0.45737 8.68 23.62 )0.87
10 )1.07610 )6.50 )13.40 )16.91 0.29240 6.23 14.52 )4.59
20 )1.00600 )2.05 )4.14 )5.37 0.22365 2.38 5.45 )2.36
40 )0.98124 )0.55 )1.11 )1.45 0.20323 0.68 1.55 )0.72

5 szxð0:2hÞ 0.26101 )6.36 )28.61 )46.49 szxð0:2hÞ 0.37874 )3.29 )8.99 14.20

10 0.20825 )6.66 )18.88 )31.09 0.50042 )1.14 )2.97 5.30

20 0.15947 )3.12 )7.93 )13.15 0.55012 )0.31 )0.80 1.51

40 0.14218 )0.96 )2.38 )3.96 0.56477 )0.08 )0.21 0.39

5 syzð0Þ 0.31549 22.20 31.69 45.21 syzð0:2hÞ )0.52367 7.59 9.80 9.78

10 0.52732 5.97 8.76 13.03 )0.60361 1.71 2.16 2.54

20 0.62920 1.55 2.28 3.45 )0.62907 0.41 0.51 0.65

40 0.66082 0.39 0.58 0.87 )0.63595 0.10 0.12 0.16
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The distributions of inplane normal stresses rx; ry for the present HZIGT, in both load cases, closely

follow the pattern of the distributions for the exact 3D solutions for all the plates and generally have less

error compared to the existing ZIGT, with the least error for the sandwich plate (d). The distributions of

the post-processed transverse shear stresses szx; syz, obtained by the HZIGT and the ZIGT are quite good
for all the plates, with the largest error being at the layer interfaces near the mid-plane. In general, the errors

in the transverse shear stresses for the HZIGT are smaller than the errors for the ZIGT.

The distributions of the transverse normal stress rz obtained from HZIGT, ZIGT and FSDT are

compared with the 3D solution for square plates (a), (b), (d) in Figs. 13 and 14 for load cases 1 and 2

respectively. It is observed that HZIGT yields consistently superior results compared to FSDT and ZIGT

for all the plates in both load cases. The distributions in HZIGT are in good qualitative agreement with the

3D solution in all cases. In contrast, even the nature of rz is erroneously predicted by FSDT and ZIGT for

plates (b) and (d) under load case 1.
The exact 3D thermo-elastic results for displacements and stresses at typical points across the thickness,

where they are large, along with the % errors of the present HZIGT, existing ZIGT, and FSDT, are given in

Tables 2–6 for the four plates under two thermal load cases for S ¼ 5; 10; 20; 40. The errors in the FSDT for
Table 3

Exact results and % error of HZIGT, ZIGT and FSDT for square plate (b)

S Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT

5 �wð�0:5hÞ )2.27770 )22.13 )100.00 )100.00 �wð�0:5hÞ 2.75290 )9.70 )38.03 )43.02
10 )0.62558 )22.59 )100.00 )100.00 1.64490 )4.01 )16.10 )19.56
20 )0.16040 )22.70 )100.00 )100.00 1.31550 )1.24 )5.04 )6.29
40 )0.04036 )22.73 )100.00 )100.00 1.22830 )0.33 )1.34 )1.69

5 �wð0:5hÞ 2.27770 )22.13 )100.00 )100.00 �wð0Þ 1.51260 0.29 12.79 3.70

10 0.62558 )22.59 )100.00 )100.00 1.32500 0.45 4.16 )0.14
20 0.16040 )22.70 )100.00 )100.00 1.23490 0.15 1.16 )0.18
40 0.04036 )22.73 )100.00 )100.00 1.20810 0.05 0.31 )0.05

5 �rxð0:5hÞ 0.91338 5.36 )32.64 )32.69 rxð0:5hÞ 0.74627 )2.74 )17.66 )34.78
10 0.80752 1.23 )10.53 )10.55 0.75237 )1.02 )4.88 )10.38
20 0.77529 0.30 )2.84 )2.85 0.76033 )0.28 )1.24 )2.71
40 0.76681 0.07 )0.73 )0.73 0.76299 )0.07 )0.31 )0.68

5 �ryð�0:25hþÞ 0.91864 )11.03 )22.67 )22.72 ryð�0:25hþÞ )0.75104 8.89 14.52 13.82

10 0.81083 )3.95 )7.61 )7.63 )0.51518 3.76 6.12 4.57

20 0.77627 )1.09 )2.08 )2.08 )0.41917 1.20 1.95 1.29

40 0.76706 )0.28 )0.53 )0.53 )0.39155 0.32 0.53 0.33

5 �sxyð�0:5hÞ )0.14263 )20.32 )48.79 )48.82 sxyð0:5hÞ )0.13164 )7.54 )14.68 )18.14
10 )0.09955 )8.74 )19.87 )19.89 )0.09746 )2.34 )4.71 )6.72
20 )0.08682 )2.63 )5.90 )5.90 )0.08639 )0.63 )1.30 )1.96
40 )0.08349 )0.70 )1.55 )1.55 )0.08339 )0.16 )0.33 )0.51

5 szxð�0:25hÞ )0.56028 4.58 )0.55 )0.60 szxð0Þ 0.19328 )5.71 )4.78 5.38

10 )0.63557 1.09 )0.14 )0.16 0.28502 )1.22 )1.20 1.76

20 )0.65719 0.27 )0.04 )0.04 0.31933 )0.29 )0.29 0.48

40 )0.66280 0.07 )0.01 )0.01 0.32901 )0.07 )0.07 0.12

5 syzð�0:25hÞ 0.55527 6.78 11.96 11.90 syzð0Þ )0.14025 )30.78 )47.82 )40.45
10 0.63375 1.77 3.01 2.99 )0.26317 )4.60 )7.20 )4.71
20 0.65669 0.45 0.75 0.75 )0.31303 )0.99 )1.56 )0.89
40 0.66267 0.11 0.19 0.19 )0.32737 )0.24 )0.38 )0.20
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�w are large and the existing ZIGT is only a marginal improvement or a marginal deterioration over FSDT.

The errors in �w for these theories, even for thin plates (a), (b), (c), (d) with S ¼ 20 are large, which for ZIGT

are 46%, 100%, 100%, 100% for load case 1 and 9.4%, 7.8%, 4.7%, 4.2% for load case 2, respectively. The

errors are the largest for the test plate (a). The corresponding errors in �w for the present HZIGT for S ¼ 20
are generally less than one fourth of those, being 10.8%, 22.8%, 22.7%, 6.5% and 2.2%, 1.9%, 1.5%, 0.8%

for load cases 1 and 2, respectively. For the moderately thick plate with S ¼ 10, the maximum error in �w for

the present HZIGT is 22.7% and 6.1% for load cases 1 and 2. The relative error in �w at bottom layer of plate

(a) for S ¼ 20 is large because its exact value itself is very small. It may be noted that there is an error of

about 23% in �w for HZIGT for plates (b) and (c) under load case 1, where the deflection is symmetrical

about the mid-plane due to the absence of any bending effect. This error, which does not reduce with higher

S is due the contribution of the inplane stresses in the transverse strain which has been neglected in the

present theory.
A similar comparison of the results for the inplane stresses rx; ry ; sxy reveals that the existing ZIGT

results are only marginally better or marginally worse than the FSDT results except for substantial

improvement in rx for plate (b) under load case 2. However, the errors in the stresses for the present
Table 4

Exact results and % error of HZIGT, ZIGT and FSDT for rectangular (b=a ¼ 2) plate (b)

S Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT

5 �wð�0:5hÞ )2.39840 )22.21 )100.00 )100.00 �wð�0:5hÞ 1.99510 )12.67 )50.44 )51.20
10 )0.63542 )22.71 )100.00 )100.00 1.07800 )5.96 )23.94 )24.60
20 )0.16125 )22.83 )100.00 )100.00 0.83326 )1.94 )7.79 )8.04
40 )0.04046 )22.86 )100.00 )100.00 0.77097 )0.52 )2.11 )2.18

5 �wð0:5hÞ 2.39840 )22.21 )100.00 )100.00 �wð0Þ 0.71047 7.57 39.16 37.04

10 0.63542 )22.71 )100.00 )100.00 0.75036 1.97 9.28 8.32

20 0.16125 )22.83 )100.00 )100.00 0.75093 0.50 2.32 2.04

40 0.04046 )22.86 )100.00 )100.00 0.75036 0.13 0.58 0.51

5 rxð�0:5hÞ 1.07560 2.84 )30.72 )30.74 rxð�0:5hÞ )0.46412 )2.53 )23.45 )34.55
10 0.90381 0.48 )10.05 )10.05 )0.38786 )1.04 )7.50 )11.32
20 0.85455 0.10 )2.72 )2.72 )0.36644 )0.30 )2.02 )3.07
40 0.84180 0.02 )0.69 )0.70 )0.36091 )0.08 )0.52 )0.78

5 ryð0Þ 0.48262 11.15 16.35 16.28 ryð�0:5hÞ 0.96525 0.23 0.53 0.36

10 0.55292 2.68 3.88 3.86 0.97960 0.06 0.13 0.09

20 0.57231 0.66 0.96 0.95 0.98363 0.01 0.03 0.02

40 0.57728 0.16 0.24 0.24 0.98467 0.00 0.01 0.01

5 sxyð�0:5hÞ )0.11967 )11.32 )29.43 )29.46 sxyð�0:5hÞ 0.05294 )5.78 )12.91 )8.34
10 )0.09790 )3.91 )9.74 )9.75 0.03323 )2.31 )5.26 )3.33
20 )0.09185 )1.96 )2.65 )2.65 0.02768 )0.69 )1.59 )1.00
40 )0.09030 )0.68 )0.68 )0.68 0.02625 )0.18 )0.42 )0.26

5 szxð�0:25hÞ )0.63003 3.03 )0.19 )0.21 szxð0Þ 0.01013 )16.66 51.43 88.39

10 )0.67639 0.73 )0.06 )0.07 0.02589 )1.29 5.67 9.94

20 )0.68881 0.18 )0.02 )0.02 0.03053 )0.25 1.24 2.19

40 )0.69197 0.04 0.00 0.00 0.03175 )0.06 0.30 0.53

5 syzð�0:25hÞ 0.26852 3.21 6.53 6.48 syzð0Þ )0.23707 )2.07 )4.37 )5.80
10 0.28998 0.83 1.64 1.63 )0.26932 )0.48 )0.99 )1.32
20 0.29585 0.21 0.41 0.41 )0.27871 )0.12 )0.24 )0.32
40 0.29736 0.05 0.10 0.10 )0.28115 )0.03 )0.06 )0.08
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HZIGT are relatively smaller, often less than half of ZIGT and even one order less in some cases. The

errors in the post-processed transverse shear stresses syz; szx in the existing ZIGT are generally of the same

order as in FSDT, whereas the error in the present HZIGT is much smaller except for the greater error in szx
for plate (b) under load case 1.
5. Conclusions

An efficient new zigzag theory (HZIGT) is presented, based on zigzag third order variation of the in-

plane displacements and sub-layer-wise quadratic variation of the transverse displacement accounting

explicitly for the thermal contribution to the transverse normal strain. The shear traction-free conditions at

the top and the bottom of the plate and the shear continuity conditions at the layer interfaces are satisfied

exactly to reduce the primary displacement variables to five. The thermal field is approximated to be

piecewise linear across the sub-layers. The present zigzag theory HZIGT is assessed by comparison with the
exact 3D thermo-elasticity solution of simply-supported plates for sinusoidal temperature distribution with
Table 5

Exact results and % error of HZIGT, ZIGT and FSDT for square plate (c)

S Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT

5 �wð�0:5hÞ )2.28010 )22.21 )100.00 )100.00 �wð�0:5hÞ 2.78690 )11.53 )39.57 )47.18
10 )0.62566 )22.60 )100.00 )100.00 1.84550 )4.90 )15.82 )18.79
20 )0.16040 )22.70 )100.00 )100.00 1.59370 )1.47 )4.65 )5.52
40 )0.04036 )22.73 )100.00 )100.00 1.52960 )0.39 )1.22 )1.44

5 �wð0:5hÞ 2.28010 )22.21 )100.00 )100.00 �wð0Þ 1.54920 )3.38 8.71 )4.98
10 0.62566 )22.60 )100.00 )100.00 1.52760 )1.35 1.70 )1.89
20 0.16040 )22.70 )100.00 )100.00 1.51360 )0.38 0.40 )0.52
40 0.04036 )22.73 )100.00 )100.00 1.50950 )0.09 0.10 )0.13

5 rxð0:5hÞ 0.85494 )11.42 )60.07 )72.22 rxð0:5hÞ 0.64727 5.21 )11.00 )15.49
10 0.77709 )5.48 )22.38 )25.54 0.59169 1.23 )3.34 )4.61
20 0.76569 )1.64 )6.30 )6.97 0.57588 0.30 )0.88 )1.21
40 0.76425 )0.43 )1.62 )1.78 0.57180 0.08 )0.22 )0.31

5 ryð�0:5hÞ 0.85494 )11.42 )60.07 )72.22 ryð0:5hÞ )0.84264 4.22 5.38 5.88

10 0.77709 )5.48 )22.38 )25.54 )0.87679 1.13 1.41 1.54

20 0.76569 )1.64 )6.30 )6.97 )0.88632 0.29 0.36 0.39

40 0.76425 )0.43 )1.62 )1.78 )0.88877 0.07 0.09 0.10

5 sxyð�0:5hÞ )0.14288 )17.06 )46.41 )43.56 sxyð0:5hÞ )0.13797 )16.98 )24.00 )26.69
10 )0.09958 )7.13 )18.40 )17.04 )0.11299 )5.80 )8.01 )8.86
20 )0.08682 )2.11 )5.39 )4.97 )0.10601 )1.59 )2.19 )2.41
40 )0.08349 )0.55 )1.41 )1.30 )0.10422 )0.41 )0.57 )0.62

5 szxð0:25hÞ 0.50909 )9.86 )27.92 )28.18 szxð0:25hÞ 0.26478 8.79 10.16 11.75

10 0.61103 )3.64 )9.75 )8.19 0.29420 2.25 2.58 2.95

20 0.64961 )1.03 )2.72 )2.10 0.30246 0.57 0.65 0.74

40 0.66079 )0.26 )0.70 )0.53 0.30459 0.14 0.16 0.18

5 syzð�0:25hÞ )0.50909 )9.86 )27.92 )28.18 syzð0:25hÞ )0.41447 7.09 7.63 8.13

10 )0.61103 )3.64 )9.75 )8.19 )0.44710 1.82 1.95 2.06

20 )0.64961 )1.03 )2.72 )2.10 )0.45608 0.46 0.49 0.52

40 )0.66079 )0.26 )0.70 )0.53 )0.45839 0.11 0.12 0.13



Table 6

Exact results and % error of HZIGT, ZIGT and FSDT for square plate (d)

S Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT

5 �wð�0:5hÞ )2.28600 )7.10 )100.00 )100.00 �wð�0:5hÞ 1.60700 )7.88 )39.74 )41.56
10 )0.65442 )6.64 )100.00 )100.00 1.10750 )2.89 )14.69 )14.99
20 )0.16992 )6.51 )100.00 )100.00 0.98211 )0.82 )4.16 )4.18
40 )0.04290 )6.49 )100.00 )100.00 0.95099 )0.21 )1.08 )1.08

5 �wð0:5hÞ 2.28600 )7.10 )100.00 )100.00 �wð0Þ 0.78872 )0.53 22.77 19.07

10 0.65442 )6.64 )100.00 )100.00 0.89909 )0.13 5.09 4.72

20 0.16992 )6.51 )100.00 )100.00 0.92977 )0.03 1.23 1.21

40 0.04290 )6.49 )100.00 )100.00 0.93789 )0.01 0.31 0.31

5 rxð�0:5hÞ 0.79731 0.00 )13.67 )13.67 rxð0:45h�Þ )0.64546 0.04 )0.05 )0.02
10 0.80447 )0.02 )3.92 )3.92 )0.64855 0.01 )0.01 )0.03
20 0.80683 )0.01 )1.02 )1.02 )0.64870 0.00 0.00 )0.02
40 0.80747 0.00 )0.26 )0.26 )0.64862 0.00 0.00 0.00

5 ryð�0:45hþÞ 0.85798 )1.13 )10.58 )10.58 ryð0:5hÞ )0.93567 0.19 0.52 0.38

10 0.82197 )0.34 )3.19 )3.19 )0.94107 0.05 0.13 0.09

20 0.81120 )0.09 )0.84 )0.84 )0.94321 0.01 0.03 0.03

40 0.80837 )0.02 )0.21 )0.21 )0.94389 0.00 0.01 0.01

5 sxyð�0:5hÞ )0.06793 )1.74 )16.88 )16.88 sxyð�0:5hÞ 0.05129 )1.81 )5.90 )5.52
10 )0.06332 )0.52 )5.20 )5.20 0.04909 )0.47 )1.56 )1.33
20 )0.06196 )0.14 )1.38 )1.38 0.04849 )0.12 )0.39 )0.32
40 )0.06161 )0.04 )0.35 )0.35 0.04833 )0.03 )0.10 )0.08

5 szxð�0:45hÞ )0.12147 0.12 )1.87 )1.88 szxð�0:45hÞ 0.08171 0.15 )1.20 )4.67
10 )0.13215 0.02 )0.51 )0.51 0.08904 0.05 )0.50 )0.59
20 )0.13539 0.00 )0.13 )0.13 0.09382 0.02 )0.15 0.08

40 )0.13624 0.00 )0.03 )0.03 0.09558 0.01 )0.04 0.05

5 syzð�0:45hÞ 0.12851 0.29 2.05 2.05 syzð�0:45hÞ )0.11607 0.25 0.59 0.39

10 0.13383 0.07 0.57 0.57 )0.11727 0.06 0.14 0.09

20 0.13544 0.01 0.14 0.14 )0.11771 0.01 0.03 0.03

40 0.13586 0.00 0.04 0.04 )0.11784 0.00 0.01 0.01
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equal temperature rise of the top and bottom surfaces of the plate and with equal rise and fall of tem-

perature of these surfaces. The temperature profiles across the thickness are based on the heat conduction

equation. A benchmark test plate, symmetric and anti-symmetric composite plates and sandwich plates are

analysed to cover a wide range of temperature profiles across the thickness. It is concluded from the

comparative study that the existing ZIGT results are only marginally better (in some cases marginally

worse) than those of the FSDT for thermal analysis. The errors are particularly large for deflection even for
thin plates with S ¼ 20. These theories should not be used for moderately thick plates with S ¼ 10 and even

for some thin plates with S ¼ 20 in which the errors are significant. The present HZIGT yields more

accurate results for the deflection and the stresses with few exceptions. The present HZIGT may be used for

all types of plates and thermal loadings with small error for SP 10. The new theory generally reproduces

quite well the thickness distributions of the inplane normal as well as transverse normal and shear stresses

and the transverse displacement for moderately thick plates with relatively small error. The new theory

developed herein is more accurate and yet as efficient as the existing zigzag theory and the FSDT, since it is

formulated in terms of only five primary displacements. Like TOT and many other HOTs, the finite element
implementation of the present theory will require Cð1Þ-continuity of the shape functions which prevents
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simple element formulations. This can, however, be avoided by using the discrete Kirchhoff technique (Cho

et al., 2003).
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