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Abstract

A new efficient higher order zigzag theory is presented for laminated plates under thermal loading. The third order
zigzag model is modified by replacing the uniform across the thickness approximation for the deflection with a layer-
wise variable approximation for deflection which explicitly accounts for the transverse thermal strain. The thermal field
is approximated as piecewise linear across the sub-layers. The displacement field is expressed in terms of the thermal
field and only five primary displacement variables by satisfying exactly the conditions of zero transverse shear stresses at
the top and the bottom and their continuity at the layer interfaces. The governing equations are derived using the
principle of virtual work. Comparison of Navier solutions for simply-supported rectangular test plate devised for this
study and composite and sandwich plates with the exact three-dimensional thermo-elasticity solutions for two kinds of
thermal loads establishes that the present efficient zigzag theory is generally more accurate than the existing zigzag
theory.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The composite and sandwich structural components used in aerospace, underwater and land based
structures are often subjected to moderate to severe environment or process based thermal loading causing
significant thermal stresses due to thermal gradient across the thickness and due to widely different thermal
properties of the adjacent laminas. These laminated components have excellent strength to weight and
stiffness to weight ratio, but relatively poor strength and stiffness for transverse shear. Hence transverse
shear plays a significant role for the moderately thick and thick laminated structures. Moreover, the layer-
wise material inhomogeneity causes a severe layer-wise distortion of the normal to the mid-surface and it
also gets strained primarily due to the thermal strain. The equivalent single layer (ESL) theories like the
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classical laminate theory (CLT), first order shear deformation theory (FSDT), the third order theories
(TOTs) and higher order theories (HOTSs) are inadequate to account for this distortion and violate the shear
stress continuity conditions at the layer interfaces. Tauchert (1991), Noor and Burton (1992), Murakami
(1993), Reddy (1997), Argyris and Tanek (1997) and Carrera (2000) have reviewed plate theories for
thermo-mechanical response. CLT, FSDT and TOTs have been applied to thermal stress analysis of
laminated plates (e.g., Stavsky, 1963; Nemrovskii, 1972; Wu and Tauchert, 1980a,b; Reddy and Hsu, 1980;
Kheider and Reddy, 1991; He, 1995; Locke, 1997). HOTs for thermal loading of laminated plates have been
developed by Jonnalagadda et al. (1993), Kant and Khare (1994), Rohwer et al. (2001) and Patel et al.
(2002). Rohwer et al. (2001) demonstrated that the transverse shear and normal stress components can be
predicted with good accuracy from HOTSs using the 3D equilibrium equations for cross-ply layered plates
under assumed linear temperature variation across the thickness.

Finite element analysis based on 3D elasticity equations and quasi-3D finite element analysis based on
discrete layer theories (DLTs) for plates with layer-wise expansions of displacements are more accurate
than the ESL theories, but are computationally expensive for real structural analysis since the number of
displacement variables depend on the number of layers. To overcome this, zigzag theories have been
developed for composite laminates in which the slope discontinuity in the in-plane displacements at the
layer interfaces is introduced through a zigzag function with values of +1 and —1 at successive layer
interfaces (Ali et al., 1999). More consistent efficient zigzag theories have been developed with layer-wise
expansion of displacements in which the number of primary displacement unknowns is reduced to those of
the ESL theory of the same order, by imposing the conditions on the continuity of transverse shear stresses
at the layer interfaces and by also possibly imposing the shear traction-free conditions at the top and the
bottom surfaces. Xioping and Liangxin (1994) developed an efficient third order zigzag model for plates
under thermal loading. Rolfes et al. (1998), Noor and Malik (1999, 2000) and Park and Kim (2002) have
presented various two-step or multi-step predictor—corrector procedures for plates under thermal loading.
Carrera (2002) has presented a variety of displacement-based ESL theories and discrete layer theories, and
also mixed stress and displacement-based discrete layer theories for thermal stress analysis of plates and
assessed them for assumed linear temperature profile across the thickness and an actual temperature profile
based on the heat conduction equation. It was concluded that: (1) the ESLs yield inaccurate results even for
thin plates; (2) the advanced zigzag theories may work well in thick plates loaded by assumed linear
temperature profile but yield inaccurate results for actual temperature profile based on the heat conduction
equation; (3) at least a quadratic layer-wise variation of deflection w with z is required to capture even the
linear thermal strain in the thickness direction. Exact thermo-elasticity solutions (Tungikar and Rao, 1994)
reveal that the non-uniformity in the deflection across the thickness, primarily due to the thermal strain, has
enormous bearing on the results. Except for the DLTs in which layer-wise expansion is taken for w, no
other available theory includes the transverse thermal strain. Kapuria et al. (2003) have recently presented
an accurate and efficient higher order zigzag theory for thermal stress analysis of laminated beams using a
variable approximation for deflection across the thickness which, for the first time, explicitly accounts for
the transverse thermal strain.

An efficient 2D higher order zigzag theory is developed in this work for thermal stress analysis of
composite and sandwich plates, in line with the higher order zigzag theory of Kapuria et al. (2003) for
beams, with modification of the existing zigzag thermal model (Xioping and Liangxin, 1994) for plates by
choosing an approximation of the transverse displacement w which accounts for the transverse thermal
strain due to thermal expansion coefficient «3. The axial displacements are approximated as a combination
of a global third order variation across the thickness with an additional layer-wise linear variation. The
thermal field is approximated sub-layer-wise as piecewise linear. The displacement field is expressed in terms
of only five primary displacement variables and the thermal field by satisfying exactly the conditions of zero
transverse shear stresses at the top and the bottom surface of the plate and their continuity at the layer
interfaces. The equilibrium equations and the boundary conditions are derived using the principle of virtual
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work. This theory is computationally efficient as the number of primary displacement unknowns is the same
as in the FSDT. Analytical Fourier series solutions are obtained for the response of simply-supported plates
under thermal loads. The existing zigzag theory (ZIGT) of Xioping and Liangxin (1994) for plates is ob-
tained as a particular case of the present theory by setting «; = 0 for all the layers. The present higher order
zigzag theory (HZIGT) is assessed by comparison with the exact 3D thermo-elasticity, the existing zigzag
theory (ZIGT) and the FSDT solutions. Numerical results for the displacements and the stresses for a
benchmark test plate devised for this study, composite symmetric and anti-symmetric cross-ply laminated
plates and sandwich plates establish that the present HZIGT is much superior to the FSDT and ZIGT.

2. Approximation of displacement fields

Consider a cross-ply composite or sandwich plate (Fig. 1) made of L perfectly bonded orthotropic plies
of total thickness 4 with the mid-plane chosen as the xy-plane with z = zy = —//2 as the bottom surface and
z =z, = h/2 as the top surface. The kth ply from the bottom has bottom surface at z = z;_;. The reference
plane z = 0 either passes through or is the bottom surface of the kyth layer. Let u,, u,; w be the in-plane and
transverse displacements. Denoting differentiation by a subscript comma, the strain—displacement relations
are:

& = Uy, Sy = uy,ya & = W,Zv yxy = ”xy + u}’,xv yyz = ”y-,z + W-y’ yzx = ux,Z + W,X' (1)

For the temperature rise 0, assuming transverse normal stress ¢, ~ 0, the linear constitutive equations
for the stresses o, t are expressed as

~
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Fig. 1. Geometry of a laminated plate.
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where

Oy T Ex
0= oy |, T:|:Zx:|a &= & 1, y:[yu]a (3)

Vye

0 Oy

0 0 O

where Qj are the reduced elastic stiffness and f, are the stress—temperature coefficients.

The temperature field 6(x, y, z) for the plate can be solved analytically for some geometries or by the finite
element method. For the 2D model developed herein, 6 is approximated as piecewise linear across the
thickness, in terms of its values at ny points at z,, / = 1,2,...,ny with z}) = zy, 2}’ = z;:

0(x,y,2) = V}(2)0' (x, ), ()

where 0'(x,y) = 0(x,y,z}). ¥)(z) are linear interpolation functions and summation convention is used for
the index /. ny can differ from L with ny > L. Each layer is divided into sub-layers for discretisation of 6
whose number is determined by the required accuracy. The functional form of QI(x, ») will depend on the
boundary conditions.

Three-dimensional thermo-elasticity exact solutions (Tungikar and Rao, 1994) reveal that for moder-
ately thick plates under thermal load, the deflection w has significant variation across the thickness due to
the much greater thermal contribution to ¢. compared to the negligible contribution of the stresses o, 6,, ..
Hence, herein w is approximated by integrating the constitutive equation for ¢, by including only the
thermal contribution

w(x,y,2) = wo(x,¥) + Fy(2)0' (x,¥), (6)

= . . . . . . .
where ¥y(z) = [ 3%} (z)dz is a piecewise quadratic function. For the kth layer, u,, u, are approximated
across the thickness as a combination of a third-order variation in z and a layer-wise linear variation:

_ Qn le 0 N @ 0 B [31
O0=10n On 0|, 0= [ > }7 B=1P,| (4)
0

u(x,y,z) = uk(xvy) - ZWOd(xvy) +lek(x7y) +22€(x7y) +Z3’7(x7y)? (7)

| Ux _ | Wox _ Uk, _ l//k\- _ éx _ My
ot 1 A ol B ol A ol A U AR ®
u, and , denote the translation and rotation variables of the kth layer.
Substituting u,, u,, w from Eqgs. (7) and (6), and 0 from Eq. (5) into Eq. (1) and using Eq. (2) yields t:
t = O Y, + 22 + 320 + P, (2)0), 9)
where 0}, = [0, ny}T. For the koth layer, denote uo(x,y) = uy, (x,y) = u(x,,0), Yo(x,y) = ¥, (x,y). The
functions u, ¥,, £, n are expressed in terms of uy and , using the (L — 1) conditions each for the continuity
of v and u at the layer interfaces and the two shear traction-free conditions t = 0 at the top and the bottom
surfaces at z = zy, z;. The continuity condition of t at the interface z = z;_; between the layersi and i — 1 is
expressed in the following recursive form so that the solution of ¥, &, # is easily tractable:
O'lY; + 22, + 322) + 07 ()0
Ai— ¢ Ni-1g! i
=0 l[lﬁ,-_l +2z,¢+ 32,27177] +0 I'Ilﬁ(zi—l)eél +20'(zi — zi1)¢

+30'( — 22 )+ 0Py (@) — Pyl )]0 1
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Using Eq. (9), the shear traction-free condition t(x, y,zy) = 0, can also be written in the above pattern as

O, +22:& +3220) + 0"y (21)0, = 20" (z1 — 20)& + 30" (22 — 2+ 0'[Ty(z1) — Py(z0))0). (1)
Adding Egs. (11) and (10) for i = 2,3,... & yields

Nk 2 Negr! / k k k pl
O (Y + 228+ 3zn) + Q"W (z)0, = 2C{E+ 6Cn+ C3,0,, k=2,...,L, (12)
t — S=5 //A L a L P 4
[— - =10 ] [ /] [ / ]
/
: A B 2 Lo
z/h L / ] L / ] [ [ ]
L / ] L ! ] L | ]
00 - A 1T L]
[ / ] [ \ ] [ | ]
[ ! 1 [ v [ ! 1
t\ load case 1 | B + N + \ B
[ \ ] [ A [ L ]
>~ - \
o5l ] I R e P I v = Sy
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0.5 Frm—————————————— ‘ e

LI e N
PR R S R
LI e N
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[ [ plate (b) ] [ plate (d) ]
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1(0.5a,0.5b,2) 7(0.5a,0.5b,2) 7(0.5a,0.5b,2)
Fig. 2. Temperature distribution for square plates (a), (b) and (d) under load cases 1 and 2.
Table 1
Effect of SCFs on % error of FSDT for plates with S =10,b/a =1
Plate Load Entity SCFs Entity SCFs Entity SCFs
516 Whitney 516 Whitney 516 Whitney
(a) 1 w(0.5)  -7226 -7542  5,(0.5) -5830  -56.53  ,(0%) 7.89 7.96
2 w(0) —-15.85 -1.08 7,(0.5) —-13.07 —-17.88 7,(0.27) -1.19 —4.45
(b) 1 w(0.5)  -100.0 -1000  6,(0.5)  -1055  -10.55  7,(-025%) -7.63  -7.63
2 w(0) -0.14 4.67  5.(0.5) -10.38 -12.78 7,(—0.25") 4.57 11.35
(©) 1 w(0.5)  -100.0  —100.0 7,(0.5) -25.54 -34.07 @,(—0.5) -25.54  -34.07
2 w(0) -1.89 -1.89  .(0.5) —4.61 —4.61 7,(0.5) 1.54 1.54
(d) 1 w(0.5)  -100.0 —100.0 0:(—0.5) 3.92 3.92 G,(—0.45") 3.19 3.19
2 w(0) 4.72 3.55 G,(0457)  —-0.02 0.08 7,(0.5) 0.09 —-0.02
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k k k
i i Nirwr! !
C]f = Z 0'(zi — zi1), C§ = Z 0 (le _Ziz—l)/27 Cg/ = Z O'[¥y(zi) — Yy(zim1))-
i=1 =1 i=1
Using Eq. (9), the condition 7.,(x,y,z;) = 0, can be written as
0"y, + 2218 + 32n] + 0" ()0 = 0.
Eliminating , from Eqgs. (14) and (12) for £ = L, and rewriting Eq. (11) yields
2CHE+6Cn = *C.%ze(lza 2208 + 32(2)’7 = Céellf — V1,
where Cl = —?é(zo) and [, is a 2x2 identity matrix. The solution of Eq. (15) for &, is
é :R3lp1 +Ré0(l{a n :R4lp1 +Ré01{17
where
A =4z2Ct —820CL, Ry =447'CL, Ry = —447'C/3,
R{ = —A7'(2C5, + 4CLCY),  RE = A7'(4z0C5, + 4CTCL) /3.
Substituting &, n from Eq. (16) into Eq. (12) yields
Vi = Ry, + R}, 0,,

e T e Y s s e o o B
AN : 1 5=5 ]
) il L ! 4 L \ i
z/h r E /;
0.0 1 r 1 F s
— Exact E
— - HZIGT i |
ZIGT L7
05 Ll Y 2 a2 N A | |
-6 -4 2 15 0.0 15 -
9(0.54,0,2) (0.5a,0.5,2)
05 T ] [T e
[ 1 S=10 1 [ $=5 7 1 [
[ 1 [ 1 [«
#h 1 / 1T ' ]
0.0 [ b r ]

_0.5:/\””\””\””\‘

-1 0 1 2 -0.5 0.0 0.5

7,(0.5a,0.5b,2) 7,:(0.5a,0,2) 7,:(0.5a,0,2)

Fig. 3. Distributions of v, W, G,, T,. for square test plate (a) under load case 1.
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(19)

Using Eq. (7), continuity of u between the layersiand i — 1 = w; + z; 1, = u;_; + z;_1¥,_, and using Eq.

(18):

up=uiy +zi (R — RO, + (R — R0,

i=2,...L

Adding Eq. (20) for i = 2 to k yields u; in terms of u;:

—k —k
up = uy + Ry, +R11011i7

k
—k i i —
Ry=> z,(Ry' =Ry, R
2

i=

Egs. (21) and (18) yield for the kyth layer:

ki
u()()C,y) = uko(xa.y) =u +R20l//l +

—ky
Rll

1
0,,

k
k i—1 i
n= Zzifl (R)" —Ryy)-

i=2

Yo(x,p) = Yy, (x,p) = Rlén‘pl “‘R]zf(l]()ﬁr

(20)

(23)

Substituting &, # from Eq. (16), u; from Eq. (21) with u; from Eq. (23), and ¥, from Eq. (18) in Eq. (7)

yields

0.5

z/h
0.0

z/h
0.0

-0.5

T TN T [ d 1
L ~N\G N 1t ] ]
. \H 4 . 4 -
[ Vo1 L ] ]
[ N ] ]
[ — Exact il 1 [ ] ]
F— - HZIGT o_ 4 C . .
[ s=10<5|! J1 [ 1 T ]
L-- - zIGT VAN 1 F ]
[ : 5: [ 1 [ . AN
[ /o1 L 1 [ ]
F AV 41t , / ' 1 F 4 R
Lo .. "Sovrwed A vty B vl
-4 -3 -2 -2 -1 0 1 2 -1 0 1
9(0.5a,0,2) w(0.5a,0.5b,2) 7,(0.5a,0.5b,2)
[ S=10 1 [ S=5 1 [ S=10 ]
[ 1 [ N1 [ ]
[ 1 [ < 1 [ ]
-1 0 1 -0.5 0.0 0.5 0.0 0.5
7,(0.5a,0.5b,2) 7..(0,0.5b,2) 7..(0,0.5b,2)

Fig. 4. Distributions of v,

W, Gy, T for square composite plate (b) under load case 1.



4668 S. Kapuria, G.G.S. Achary | International Journal of Solids and Structures 41 (2004) 4661-4684
!
u(x,,z) = uo(x,y) — 2wy, (x, ) + Re(2) 1 (x, ) + Ry (2)0,(x, ),
where
Ri(z) = R + zRY + 2Ry + 2Ry,

ko —k —ko Kl —k —ko
Rl_RZ_R27 Rl _Rll_Rll'

Riy(2) = Ry + 2R}, + 2R + 2°Ry,

Substituting ¥, in terms of Y, from Eq. (23), into Eq. (24) yields the expression of u as

u(x,y,2) = uo(x,y) — 2wo, (x,3) + R (2o(x.3) + R ()0} (x.),
where

RF(z) = Re(2)(RY) ™" = R¥ + 2Rk + 2Ry + 2°Ry,

R'(z) = Riy(z) - R*2)Ry = RY + 2R}, + 2R + 2Ry,
(13?7?;,733,734) = (R, RS, Ry, Ry)(RY) ™,
Ri' = RYf ~RIRY, Rl = R}~ RARy

Dl _ pl L) Pl _ pl B pko
R.=R.—R:R%, R. =Rl - R,RY.

(27)

RF, R¥ are diagonal matrices. Thus w, u are related to the the primary variables ug, wy, 1, and 0' by Egs. (6)
and (26). The number of the mechanical primary variables is five which is the same as in the FSDT and the
TOT. Since o, has been neglected in the present formulation, like most other 2D theories including FSDT

and TOT, the condition of continuity of o, at the layer interfaces is not satisfied.

0.5 T TR [T I RARR A RA RS RARORES~an uy
t — Exact g F b r S=5 oy 7

[ — - HZIGT d O 1 [ //, ]

[~ ZIGT 10 1 [ ' ]

zfh | 1 I 1 T 1
0.0 | 4k 4 k1 o

E 4 E 4 L \ 4

[ 1 I 1 [ N ]

[ 1 I / . ] 7 ]

_0.5 L 1 (VAN § A N Y/ T B B
-5 -4 -3 -2 -1 2 0 2 -1 0 1

%(0,0.5b,%) w(0.5a,0.5b,%2) 7,(0.5a,0.5b,2)

0.5 e e

[ 71 F < 1 [ . j

[ S=10 y 1 [ S=5 . 1 [ S=10 ]

[ I 1 [ 1 [ ]

z/h 1T 1T 1
0.0 F T B SRS 4 b = .

[ Vol [ 1 [ ]

. \\A . 4 |- 4

[ v 1L s. 1 [ ]
o5l 3 Dy A R B S R N

-1 0 1 -0.25 0.0 0.25 0.5 0.0 0.25 0.5 0.75
7,(0.5a,0.5b,2) 7,.(0,0.5b,2) 7.(0,0.5b,2)

Fig. 5. Distributions of &, w, @,, 7., for square composite plate (c) under load case 1.
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3. Governing equations of HZIGT

Let 4 be the surface area of the plate. Denoting (- - ) = Zizl fz Zf (...)dz, the principle of virtual work
can be expressed as k-1
/[(ax 06y + 0,08 + T2y, 07y, + 7,207, + T2 67, ] dA — / (G, Sty + T Sty + T, 5W) ds = 0 (28)
A I,

Y Sug, dwy, OY. I'y, is the boundary curve of the mid-plane of the plate with normal #n, tangent s and enclosed
area 4. This variational equation is expressed in terms of duy, dwy, 6, and the stress resultants to yield
equilibrium equations and boundary conditions. The stress resultants N, M, P, Q, V are defined by

N=[N: N, NyJ', M=[M. M, M,]', P=[P P. Py PRI,
o=[0. o], Vv=[k K (29)

F=[NT M PN =[(fTa)], [0.¥] = ([RY (). 1)), (30)
where f = [l zI; @], I, is a n x n identity matrix and

C[®0 00
P=10 0 0 R, (31)
0 R R, O

0.5 - e e SRR R R R

F Exact 4 1 F S=5 A

L — - HZIGT ] [ 1 [ ]

[ Z21GT 1 [ 1 [ ]

b 11 11 ]

0.0 1r 1r ]

L : 1 [ . 1 [ N

0.5 7. PR R P AR SRR P S S S S AN S S S S ST S R

-2 -1 0 -2 0 2 -1 0 1
9(0.5a,0,2) w(0.5a,0.5b,2) 7,(0.5a,0.5b,2)

[ 5=10 1 [ 5=5 1 [ s=10 ]

b | i i ]

0.0 - 1T 1T ]

-0.5 b b | N A T [ N A T
-1 0 1 -0.1 0.0 0.1 -0.1 0.0 0.1
7,(0.5a,0.5b,2) 7,:(0.5a,0,2) 7,:(0.5a,0,2)

Fig. 6. Distributions of v, W, ,, 7,. for square sandwich plate (d) under load case 1.
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It can be shown that the elements of R¥, N, M, P transform as second order tensors and the elements of
V, O transform as vectors for the coplanar axes x, y and n, s.
Using expressions of w, u from Egs. (6), (26) and using Eq. (30), the area integral in Eq. (28) becomes

/ (77 + 81 0] da, (32)
A
where
& = [uox,x U,y Uy T Ux —Woxx —Woyy —2W0,xy lﬁox‘x ‘ﬁox,y ‘ﬁoy,x ‘ﬁoy,y]T, (33)
52 = [WO\ lpoy ]T'
Using Eq. (26), the relation for the components n, s can be expressed as
Suy | _ [ du, W, RERE [ S, R RET IS0,
oo | = (s ==L+ (R R [abe ]+ (R R oo 4

Using the expressions of w, u from Egs. (6), (26) and the stress resultant components for axes 7, s defined
analogous to Eq. (30), the line integral in Eq. (28) can be expressed, using Eq. (34), as

/ [N, St + Nos Sttg, — My 3w, + (Vy + M) Swo + Py S, + Prs g Jds + > AM,i(s:) Swo(s1) = 0,
I i

(35)

where the lateral surface has corners at s = s;.

0.5 e e , S ——
[ N 5=10 10 1 [ 5=5 1
L X 1 [ ‘ 1 ]
[ AN 1 [ e 1 L i
[ \ ] Z10§ ; 1 F =]
[ 1 [ 1 [ -]
z/h r 1T | 1 T 7 1
0.0 F 4 F 4 F “ .
[ N\ 1 [ 1 [ ]
L N\ 1 1t ]
r — Exact \\N75 1 1T 1
[ — - HZIGT ‘\ YR 1 r 1
- ZIGT N1 T 1t — 1
o) (A I L R B P B .
-6 -4 -2 0 2 1 2 3 -1 0 1
9(0,0.5a,%) w(0.5a,0.5b,%) 7,(0.5a,0.5b,2)
0.5 e e e
[ 5=10 ] [ S=5 1 [ S=10 ]
[ 1 [ 2 1 [ ]
[ s 1 F 1 [ ]
z/h 1 S B ‘ 10 ]
0.0 [ 4 4 F v 4 F >
[ 1 [ % 1 [ ]
-1 0 1 -0.5 -0.25 0.0 0.25 -0.5 -0.25 0.0 0.25

7,(0.5a,0.5b,2)

7,:(0.5a,0,2)

7,:(0.5a,0,2)

Fig. 7. Distributions of v, W, G,, T,. for square test plate (a) under load case 2.
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The area integral in Eq. (32) is expressed in terms of duy,, duq,, dwo, 8y, , 8, by using Green’s theorem
if required, and the terms involving duy, , duo,, 8, , Y , dWo ., SWO,y in the integrand of I'; are expressed in
terms of the components 7, s. The details are omitted. Thus Eq. (28) yields the following five equations of
equilibrium:

- Nx,x - ny,y = Oa _nyx,x - Ny,y = 07 _Mx,xx - 2Mxy¢.xy - ju)u,yy = 07
- Px,x - P)v(.y + Qx = 07 _ny,x - Py,y + Qy = 07 (36)

The boundary conditions on I'; are the prescribed values of one of the factors of each of the following
products:

Z/lO,,]Vn; uOSan; WO(Vn +Mns7s)a WO,any l//0,,Pn> lp()xPnsa and at Si: WO(Si) AMns(Si)- (37)

The relations between the resultants Fj, F> with g, &, are obtained by substituting the expressions of o, t
into Eq. (30):

Fi=dAg + 40, —4'0', 0=18+40, (38)
T —
where 0, = fox iny (nyx 971”; and the plate stiffness 4[10 x 10],4[2 x 2]; the plate thermo-mechanical

coefficients A'[10 x 4],21 [2 x 2],7'[10 x 1] are defined in terms of the material constants by

— —kl - — = PN S =
4,4 = (T @O ), 8", ' = UTEBYNE), [AA] = (R0 [RT()), (39)
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Fig. 8. Distributions of #, w, @,, T, for square composite plate (b) under load case 2.
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with
R, 0 0 0 ,
—kl — —kl —
=10 0 0 Rol|l T =E.(2+7(0,
0 R, Ry 0
[ Ay A Avo | Ay Ay, A A b
Ay Axn Az 10 T . Ay Ay Ay Ay, ; 7
A= . . :A 5 A = . . . ) V= .
L4101 Ao Aio.10 A, A, Als Alos V1o
o r—1 -1
1= An An| _ 57 1 _ |4y Ap
— | 5 - ) - | = —1
| A2 A Ay A

(42)

Substitution of the expressions of the resultants from Eq. (38) into Eq. (36), yields the following equi-

librium _elquations in terms of U = [u,
A, 4,44

LU =P,

T
Up, Wo lPoX ‘//OJ

where P=[P, P, P P, PS]T. L is differential operator matrix with L;, = L,; and

A i s s T 1 [T
k- 4 - 4 . S:5 // 4
: 1t 1t % ]
z/h 1 10 1t \ ]
0.0 - 1 F 4 F p -
: 10 1t / ]
E Exact S=5 E E E E E
t — — HZIGT B t 1 L N ]
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Fig. 9. Distributions of &, w,

7..(0,0.5b,2) 7,.(0,0.5b,2)

@, T, for square composite plate (c) under load case 2.

, taking into account the zero elements of

(43)
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Liy=—An() o —A450),, Lo=—(n+4:)(),,

Liz = A14() o + (Ais + 2436)() 1y Lia = —A417() o — 435() 5
Lis = —=(dijo +430)() 0 Lo = —An() , = A53() 1

Loz = (Ao + 2436)() 1y + A25() 0

Loy = —(Aoy + 435) () Los = =A30() c — 42:10()

Lyy = —A44() e — (das + Asa +4466) () 1y — As55() 1100
Lys = Ag7() oo + (As7 + 2468) () 4y L3s = (Ao + 24690)()
Lig=Ay — A77()7xx _ASS(),yy’ Lys = —(d7,10 +A89)()’XY’
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Fig. 10. Distributions of v, W, G,, 7,. for square sandwich plate (d) under load case 2.

4673

(45)



4674 S. Kapuria, G.G.S. Achary | International Journal of Solids and Structures 41 (2004) 4661-4684

To assess the theory developed herein, by comparison with the 3D exact thermo-elasticity solution,
analytical Navier solution is obtained for simply-supported rectangular plates of sides @, b along the axes
x,y for the boundary conditions

atx:Oaa:Nx7u0yaW07Mx7anlp0y :Ov aty:ovb:NWMONWWMWP}HWOX =0. (46)
The solution is expanded as:

wo 0 s oo | [wy 0'],,sin(nmx/a)sin(mmry/b)
uy, Yo, :ZZ [uo, VYo, |,, cOs(nmx/a)sin(mmy/b)

o, Y, n=l m=1 | [uo, Wy ],,sin(nmx/a)cos(mmy/b)

Eq. (43) yield algebraic equations for n, mth Fourier component. These are not listed for brevity. = can be
obtained using Eq. (2), or more accurately by integrating the 3D equations of equilibrium. All transverse
stresses in the present study have been computed using the 3D equilibrium equations.

4. Numerical results and assessment

The accuracy of the present theory is assessed by comparison with the exact 3D thermo-elasticity
solution (Tungikar and Rao, 1994). The results are also compared with the existing zigzag theory and
FSDT in order to assess its improvement over these theories. The shear correction factor for the FSDT
solution is taken as 5/6. Four highly inhomogeneous simply-supported plates (a), (b), (¢c) and (d) are
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Fig. 11. Distributions of v, W, G,, T, for rectangular (b/a = 2) composite plate (b) under load case 1.
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selected for the numerical study. The stacking order is mentioned from the bottom. The 5-ply plate (a),
which has been devised as a benchmark test case, has plies of thickness 0.14/0.254/0.15k/0.21/0.3h of
materials 1/2/3/3/3 with orientations 6, as [0°/0°/0°/90°/0°], which have highly inhomogeneous properties
for stiffness in tension and shear as in Averill and Yip (1996) and highly inhomogeneous coefficients of
thermal expansion and thermal conductivities. Plates (b) and (¢) are graphite-epoxy cross-ply composite
plates of material 4 (Xu et al., 1995), consisting of four plies of equal thickness 0.254 with symmetric [0°/
90°/90°/0°] and anti-symmetric [90°/0°/90°/0°] lay-ups, respectively. The 5-layer sandwich plate (d) has
graphite-epoxy faces [0°/90°] and a soft core (Noor and Burton, 1994) with thickness 0.054/0.054/0.84/
0.054/0.05h. The material properties of materials 1-4 and of the face and the core of the sandwich plate are:

[(YL, Yr, Gyr, GZT)7 Vir, VrT,s (05L7 OCT)7 (kukT)] =

Material 1: [(6.9,6.9,1.38,1.38) GPa,0.25,0.25,(35.6,35.6) x 10°° K™, (0.12,0.12) Wm ' K'].
Material 2: [(224.25,6.9,56.58,1.38) GPa,0.25,0.25,(0.25,35.6) x 107 K™',(7.2,1.44) Wm 'K}
Material 3: [(172.5,6.9,3.45,1.38) GPa,0.25,0.25,(0.57,35.6) x 107 K™',(1.92,0.96) Wm ' K'].
Material 4: [(181,10.3,7.17,2.87) GPa,0.28,0.33,(0.02,22.5) x 10-® K", (1.5,0.5) Wm 'K '].
Face: [(131.1,6.9,3.588,2.3322) GPa,0.32,0.49, (0.0225,22.5) x 10°° K", (1.5,0.5) Wm 'K '].
For the core: [(Yl, Yz, Y3, G127 G23, G31), V12, V13, sz;] = [(02208, 0.2001 s 27607 1656, 45547 5451) MPa,
0.99,3 x 107°,3 x 10,0, =30.6 x 10 K" k; =3.0 Wm 'K,

where L and T denote directions parallel and transverse to the fibres, v;r is Poisson’s ratio for strain in the 7'
direction under uniaxial normal stress in the L direction, and k;, k7, k; are the thermal conductivity coef-
ficients.
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Fig. 12. Distributions of #, w, G,, 7,, for rectangular (b/a = 2) composite plate (b) under load case 2.
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Two thermal load cases are considered.

1. Equal temperature rise of the bottom and the top surfaces of the plate with sinusoidal variation:
0(x, £h/2) = Ty sin(nx/a) sin(my/b).

2. Equal rise and fall of temperature of the top and bottom surfaces of the plate with sinusoidal variation:
O(x,h/2) = —0(x,—h/2) = Tysin(nx/a) sin(my/b).

For the symmetric laminate, case 1 corresponds to thermal stretching problem with no deflection of the
mid-plane and case 2 corresponds to thermal bending problem. The results are non-dimensionalised as
follows with S = a/h and with the respective values of Yr and o7 for plates (a), (b), (c) and those of the face
material for plate (d):

(ITI,E,V_V) = IOO(MX,M},,W/S)/OCTSI’IT(), (EX,E_V) = (O'X,O'y)/O(TYrT(),
(f)mfzxvaz) = (T_vz; Toxs Saz)S/O(TYTTm T = T/TO

The 3D thermal problem is solved exactly by exact analytical solution of the heat conduction equation
for all the layers and exact satisfaction of the thermal boundary conditions at the top, bottom and four
sides, and the continuity conditions at the layer interfaces for temperature and heat flow. The distributions
of temperature across the thickness, for the two thermal load cases are given in Fig. 2. These cover a wide
range of temperature profiles with large discontinuities in its slope at the layer interfaces in some cases and
constitute ideal lay-ups and thermal load cases for assessment of 2D theories. The benchmark test plate (a),
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Fig. 13. Distributions of &, for square plates (a), (b) and (d) under load case 1.
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devised for this study, does indeed simulate the case of highly non-linear temperature distribution with
large discontinuities in its slope. For the present zigzag theory (HZIGT), each layer is divided into » sub-
layers for the discretisation of the temperature field across the thickness. Hence, for a plate of L plies, the
number n, of interpolation points in Eq. (5) equals rL + 1. The values of 6,(x,y) used in Eq. (5) for
piecewise linear discretisation of 0 are obtained from the values 6’ of the 3D analytical thermal solution at
these ny interpolation points, i.e., 0'(x,y) = 0' sin(nx/a) sin(my/b). Convergence studies have revealed that
accurate results are obtained by approximating the exact temperature distributions across the thickness by
sub-layer-wise linear distributions with eight equal sub-layers in the core of sandwich plate and four equal
sub-layers in each ply for all other layers. As mentioned in the introduction, the ZIGT results are obtained
from the formulation of HZIGT by setting o3 = 0 for all the layers.

The accuracy of FSDT depends on shear correction factors (SCFs). The deflection and the inplane
stresses in the middle cross-section, at locations across the thickness where these are large, are computed
with a constant SCF of 5/6 and with lay-up dependent values according to the method suggested by
Whitney (1973). The % errors with respect to the exact 3D solution are compared in Table 1 for square
plates (a), (b), (c), (d) with S = 10. Non-dimensional coordinate z/A are used for tabulating the results. It is
observed that except for a very few cases, the FSDT results with the constant SCF of 5/6 are either identical
to or better than the results with the lay-up dependent SCFs. Hence all subsequent results for FSDT have
been reported with the constant SCF of 5/6.

The thickness distributions of v, 7,. at the end and of w, &, at the centre, obtained by the present zigzag
theory (HZIGT), are compared with the exact 2D thermo-elasticity solution and the existing zigzag theory
(ZIGT) in Fig. 3 for thermal load case 1 for thick (S = 5) and moderately thick (S = 10) square test plate
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Fig. 14. Distributions of &, for square plates (a), (b) and (d) under load case 2.
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(a). Similar results for stresses and displacements for square plates (b), (c), (d) for load case 1 are presented
in Figs. 4-6, respectively. The results for the four square plates for load case 2 are compared in Figs. 7-10.
The results for the rectangular plate (b) with b/a = 2 are compared in Figs. 11 and 12 for the two load
cases. The distributions of inplane displacements #, v for the present HZIGT and ZIGT for plates (a), (b),
(c) under thermal load 1, have large errors in some layers for S = 5, 10, with the errors decreasing with the
increase in S but the HZIGT distributions are superior to the ZIGT distributions. The HZIGT distributions
of v in Fig. 6 for the sandwich plates (d) under thermal load 1 are very accurate, whereas the ZIGT dis-
tributions have large qualitative and quantitative errors. The corresponding errors in the distributions of
inplane displacements i, v for thermal load 2 in Figs. 7-10 and 12, for both HZIGT and ZIGT, are rela-
tively much smaller compared to load case 1.

The distributions of the transverse displacement w across the thickness for the present HZIGT are in
excellent qualitative agreement with the exact 3D thermo-elasticity solution for all the plates with § = 10,5
in both load cases, with small quantitative error for the central deflection. The uniform distributions of w
for the existing ZIGT are highly erroneous for all the cases. The w distributions of the present HZIGT in
both the load cases have the least error for the sandwich plate (d), while the maximum error in load case 1 is
for the symmetric composite plate (b) and in load case 2 it is for the anti-symmetric composite plate (c).

Table 2
Exact results and % error of HZIGT, ZIGT and FSDT for square plate (a)

N Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT
5 w(—0.5h) —-1.58020 -20.96 -111.30  -115.79 w(0) 1.30610  —6.08 1.65 -36.97
10 —-0.39888 -25.70 —-142.07 -153.67 1.07840  -2.01 0.75 -15.85
20 0.02587  108.08 595.09 655.29 0.98267  —0.55 0.30 —4.85
40 0.14609 491 26.95 29.83 0.95470  -0.14 0.08 -1.29
5 w(0.5h) 2.33110 -20.51 -92.34 —-89.30 w(0.5h) 2.84540 -12.00 —53.34 =71.07
10 0.77178 -18.16 —-78.26 -72.26 1.48500  —6.11 -26.84 —-38.89
20 0.33507 -10.77 —46.34 —41.69 1.08720 -2.22 -9.37 —-14.00
40 022452 —-4.04 -17.40 —-15.52 0.98096  —0.62 —-2.60 -3.93
5 7,(0.5h) 0.67988  —0.07 -77.92 —-83.70 7.(0.5h) 0.89136 1.80 =34.77 —41.80
10 0.34409 -6.54 -53.11 —58.30 0.80366  —0.83 —-12.06 —-13.07
20 0.19963 —4.12 -25.53 -28.37 0.78489  —-0.33 -3.31 -3.40
40 0.15644 -1.44 -8.39 -9.36 0.78101  —0.09 -0.85 —-0.86
5 a,(0%) 1.33650  18.20 29.24 30.30 3,(0.2h7) 1.35310 2.52 3.35 1.05
10 1.88250 4.80 7.25 7.89 1.19680 1.22 1.86 -1.19
20 2.08710 1.23 1.83 2.03 1.12410 0.39 0.61 —0.54
40 2.14520 0.31 0.46 0.51 1.10200 0.10 0.16 -0.16
5 Ty (—0.407) —1.15700 -15.42 -33.21 -39.29 Ty (—0.407) 0.45737 8.68 23.62 -0.87
10 -1.07610  —6.50 —-13.40 -16.91 0.29240 6.23 14.52 —4.59
20 -1.00600  -2.05 —4.14 -5.37 0.22365 2.38 5.45 -2.36
40 -0.98124  -0.55 -1.11 —-1.45 0.20323 0.68 1.55 -0.72
5 7..(0.2h) 0.26101  -6.36 -28.61 —46.49 7..(0.2h) 0.37874  -3.29 -8.99 14.20
10 0.20825  —6.66 —-18.88 -31.09 0.50042 -1.14 -2.97 5.30
20 0.15947 -3.12 -7.93 -13.15 0.55012  -0.31 -0.80 1.51
40 0.14218  -0.96 -2.38 -3.96 0.56477  —0.08 -0.21 0.39
5 7,.(0) 0.31549  22.20 31.69 45.21 7,.(0.2h) —-0.52367 7.59 9.80 9.78
10 0.52732 5.97 8.76 13.03 —0.60361 1.71 2.16 2.54
20 0.62920 1.55 2.28 345 —-0.62907 0.41 0.51 0.65

40 0.66082 0.39 0.58 0.87 —-0.63595 0.10 0.12 0.16
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The distributions of inplane normal stresses &, 6, for the present HZIGT, in both load cases, closely
follow the pattern of the distributions for the exact 3D solutions for all the plates and generally have less
error compared to the existing ZIGT, with the least error for the sandwich plate (d). The distributions of
the post-processed transverse shear stresses 7., 7,., obtained by the HZIGT and the ZIGT are quite good
for all the plates, with the largest error being at the layer interfaces near the mid-plane. In general, the errors
in the transverse shear stresses for the HZIGT are smaller than the errors for the ZIGT.

The distributions of the transverse normal stress o, obtained from HZIGT, ZIGT and FSDT are
compared with the 3D solution for square plates (a), (b), (d) in Figs. 13 and 14 for load cases 1 and 2
respectively. It is observed that HZIGT yields consistently superior results compared to FSDT and ZIGT
for all the plates in both load cases. The distributions in HZIGT are in good qualitative agreement with the
3D solution in all cases. In contrast, even the nature of o, is erroneously predicted by FSDT and ZIGT for
plates (b) and (d) under load case 1.

The exact 3D thermo-elastic results for displacements and stresses at typical points across the thickness,
where they are large, along with the % errors of the present HZIGT, existing ZIGT, and FSDT, are given in
Tables 2-6 for the four plates under two thermal load cases for S = 5, 10, 20, 40. The errors in the FSDT for

Table 3
Exact results and % error of HZIGT, ZIGT and FSDT for square plate (b)

S Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT
5 w(—0.5h) -2.27770 -22.13  -100.00  —100.00 w(—0.5h) 2.75290 -9.70 -38.03  —43.02
10 —0.62558 -22.59  -100.00  —100.00 1.64490 -4.01 -16.10 —19.56
20 -0.16040 -22.70  —100.00  —100.00 1.31550 -1.24 -5.04 -6.29
40 —0.04036 -22.73  -100.00  —100.00 1.22830 -0.33 -1.34 -1.69
5 w(0.5h) 227770 -22.13  -100.00  —100.00 w(0) 1.51260 0.29 12.79 3.70
10 0.62558 -22.59  -100.00  —100.00 1.32500 0.45 4.16 —-0.14
20 0.16040 -22.70  -100.00  —100.00 1.23490 0.15 1.16 —-0.18
40 0.04036 -22.73  -100.00  —100.00 1.20810 0.05 0.31 -0.05
5 G.(0.5h) 0.91338 5.36 -32.64 -32.69 3,(0.5h) 0.74627 -2.74 -17.66  -34.78
10 0.80752 1.23 -10.53 -10.55 0.75237 -1.02 -488 -10.38
20 0.77529 0.30 -2.84 -2.85 0.76033 -0.28 -1.24 -2.71
40 0.76681 0.07 -0.73 -0.73 0.76299 -0.07 —-0.31 —-0.68
5 G,(—0.25h") 091864 -11.03 -22.67 -22.72 a,(—0.251")  —0.75104 8.89 14.52 13.82
10 0.81083  -3.95 -7.61 -7.63 —-0.51518 3.76 6.12 4.57
20 0.77627  -1.09 -2.08 -2.08 -0.41917 1.20 1.95 1.29
40 0.76706  —0.28 -0.53 -0.53 —-0.39155 0.32 0.53 0.33
5 T, (—0.5h) —0.14263 -20.32 —48.79 —48.82 T, (0.5h) —-0.13164 -7.54 -14.68 -18.14
10 -0.09955 -8.74 —-19.87 -19.89 —0.09746 -2.34 -4.71 -6.72
20 —-0.08682  —2.63 -5.90 -5.90 —-0.08639 —-0.63 -1.30 -1.96
40 —-0.08349  -0.70 -1.55 -1.55 —-0.08339 —-0.16 -0.33 —-0.51
5 7.(—0.251)  —0.56028 4.58 -0.55 —-0.60 7..(0) 0.19328 -5.71 —4.78 5.38
10 —-0.63557 1.09 -0.14 —-0.16 0.28502 -1.22 -1.20 1.76
20 -0.65719 0.27 -0.04 -0.04 0.31933 -0.29 -0.29 0.48
40 —0.66280 0.07 -0.01 -0.01 0.32901 -0.07 -0.07 0.12
5 7,.(—0.25h) 0.55527 6.78 11.96 11.90 7,.(0) —-0.14025  -30.78 -47.82  -40.45
10 0.63375 1.77 3.01 2.99 -0.26317 —4.60 -7.20 —4.71
20 0.65669 0.45 0.75 0.75 —-0.31303 -0.99 -1.56 -0.89
40 0.66267 0.11 0.19 0.19 -0.32737 —-0.24 —-0.38 -0.20
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w are large and the existing ZIGT is only a marginal improvement or a marginal deterioration over FSDT.
The errors in w for these theories, even for thin plates (a), (b), (c), (d) with § = 20 are large, which for ZIGT
are 46%, 100%, 100%, 100% for load case 1 and 9.4%, 7.8%, 4.7%, 4.2% for load case 2, respectively. The
errors are the largest for the test plate (a). The corresponding errors in w for the present HZIGT for S = 20
are generally less than one fourth of those, being 10.8%, 22.8%, 22.7%, 6.5% and 2.2%, 1.9%, 1.5%, 0.8%
for load cases 1 and 2, respectively. For the moderately thick plate with § = 10, the maximum error in w for
the present HZIGT is 22.7% and 6.1% for load cases 1 and 2. The relative error in w at bottom layer of plate
(a) for S = 20 is large because its exact value itself is very small. It may be noted that there is an error of
about 23% in w for HZIGT for plates (b) and (c) under load case 1, where the deflection is symmetrical
about the mid-plane due to the absence of any bending effect. This error, which does not reduce with higher
S is due the contribution of the inplane stresses in the transverse strain which has been neglected in the
present theory.

A similar comparison of the results for the inplane stresses @,,d,,7,, reveals that the existing ZIGT
results are only marginally better or marginally worse than the FSDT results except for substantial
improvement in ¢, for plate (b) under load case 2. However, the errors in the stresses for the present

Table 4
Exact results and % error of HZIGT, ZIGT and FSDT for rectangular (b/a = 2) plate (b)

N Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT
5 w(—0.5h) -2.39840 -22.21 —100.00 —100.00  w(—0.5h) 1.99510 -12.67 -50.44 -51.20
10 —-0.63542 -22.71 —100.00 —100.00 1.07800 —5.96 -23.94 —24.60
20 -0.16125 -22.83 —100.00 —100.00 0.83326 -1.94 -7.79 -8.04
40 —0.04046 -22.86 —100.00 —100.00 0.77097 -0.52 -2.11 -2.18
5 w(0.5h) 2.39840 -22.21 —100.00 —-100.00  w(0) 0.71047 7.57 39.16 37.04
10 0.63542 -22.71 —100.00 —100.00 0.75036 1.97 9.28 8.32
20 0.16125 -22.83 —100.00 —100.00 0.75093 0.50 2.32 2.04
40 0.04046 -22.86 —100.00 —100.00 0.75036 0.13 0.58 0.51
5 a,.(—0.5h) 1.07560 2.84 -30.72 -30.74  ©.(—0.5h) —0.46412 -2.53 —-23.45 -34.55
10 0.90381 0.48 -10.05 -10.05 —-0.38786 —1.04 -7.50 -11.32
20 0.85455 0.10 -2.72 -2.72 —0.36644 —-0.30 -2.02 -3.07
40 0.84180 0.02 —-0.69 -0.70 —-0.36091 -0.08 —-0.52 -0.78
5 a,(0) 0.48262 11.15 16.35 16.28  6,(—0.5h) 0.96525 0.23 0.53 0.36
10 0.55292 2.68 3.88 3.86 0.97960 0.06 0.13 0.09
20 0.57231 0.66 0.96 0.95 0.98363 0.01 0.03 0.02
40 0.57728 0.16 0.24 0.24 0.98467 0.00 0.01 0.01
5 T, (—0.5h) —0.11967 -11.32 —-29.43 -29.46  7,,(—0.5h) 0.05294 -5.78 -12.91 -8.34
10 -0.09790 -3.91 -9.74 -9.75 0.03323 -2.31 -5.26 -3.33
20 -0.09185 -1.96 -2.65 -2.65 0.02768  —0.69 -1.59 —-1.00
40 —-0.09030 —0.68 —-0.68 —-0.68 0.02625 -0.18 —-0.42 —-0.26
5 T..(—0.25h) —-0.63003 3.03 -0.19 -0.21  7,(0) 0.01013 —-16.66 51.43 88.39
10 —-0.67639 0.73 —-0.06 -0.07 0.02589 -1.29 5.67 9.94
20 —0.68881 0.18 -0.02 -0.02 0.03053 -0.25 1.24 2.19
40 —-0.69197 0.04 0.00 0.00 0.03175  -0.06 0.30 0.53
5 7,.(—0.25h) 0.26852 3.21 6.53 648 7,.(0) -0.23707 -2.07 —4.37 -5.80
10 0.28998 0.83 1.64 1.63 -0.26932 -0.48 -0.99 -1.32
20 0.29585 0.21 0.41 0.41 -0.27871 -0.12 -0.24 -0.32

40 0.29736 0.05 0.10 0.10 -0.28115  -0.03 -0.06 -0.08
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HZIGT are relatively smaller, often less than half of ZIGT and even one order less in some cases. The
errors in the post-processed transverse shear stresses 7., 7., in the existing ZIGT are generally of the same
order as in FSDT, whereas the error in the present HZIGT is much smaller except for the greater error in 7,
for plate (b) under load case 1.

5. Conclusions

An efficient new zigzag theory (HZIGT) is presented, based on zigzag third order variation of the in-
plane displacements and sub-layer-wise quadratic variation of the transverse displacement accounting
explicitly for the thermal contribution to the transverse normal strain. The shear traction-free conditions at
the top and the bottom of the plate and the shear continuity conditions at the layer interfaces are satisfied
exactly to reduce the primary displacement variables to five. The thermal field is approximated to be
piecewise linear across the sub-layers. The present zigzag theory HZIGT is assessed by comparison with the
exact 3D thermo-elasticity solution of simply-supported plates for sinusoidal temperature distribution with

Table 5
Exact results and % error of HZIGT, ZIGT and FSDT for square plate (c)

N Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT
5 w(—0.5h) -2.28010 —-22.21 —100.00 —100.00 w(—0.5h) 2.78690 —11.53 —-39.57 —47.18
10 —-0.62566  -22.60 —-100.00 —-100.00 1.84550 -4.90 —-15.82 -18.79
20 -0.16040 -22.70 —-100.00 —100.00 1.59370 -1.47 —4.65 -5.52
40 —-0.04036 -22.73 —-100.00 —100.00 1.52960 -0.39 -1.22 —-1.44
5 w(0.5h) 2.28010 -22.21 —-100.00 —100.00 w(0) 1.54920 -3.38 8.71 —4.98
10 0.62566  —22.60 —-100.00 —100.00 1.52760 -1.35 1.70 -1.89
20 0.16040 -22.70 —100.00 —100.00 1.51360 —-0.38 0.40 —-0.52
40 0.04036 —-22.73 —-100.00 —100.00 1.50950 —-0.09 0.10 —-0.13
5 5.(0.5h) 0.85494 -11.42 —-60.07 -72.22 7.(0.5h) 0.64727 5.21 —-11.00 —-15.49
10 0.77709 -5.48 -22.38 —-25.54 0.59169 1.23 -3.34 —4.61
20 0.76569 —-1.64 —-6.30 -6.97 0.57588 0.30 -0.88 -1.21
40 0.76425 —-0.43 -1.62 -1.78 0.57180 0.08 -0.22 —-0.31
5 @,(—0.5h) 0.85494 -11.42 —-60.07 -72.22 7,(0.5h) —-0.84264 422 5.38 5.88
10 0.77709 -5.48 -22.38 -25.54 —-0.87679 1.13 1.41 1.54
20 0.76569 —-1.64 —-6.30 -6.97 —0.88632 0.29 0.36 0.39
40 0.76425 —-0.43 -1.62 -1.78 —0.88877 0.07 0.09 0.10
5 To(—0.5)  —0.14288 —17.06 —46.41 —43.56 T,(0.50)  —0.13797 —-16.98 —24.00 -26.69
10 —-0.09958 -7.13 —-18.40 —-17.04 —-0.11299 -5.80 -8.01 —-8.86
20 —0.08682 -2.11 -5.39 -4.97 —0.10601 -1.59 -2.19 -2.41
40 —0.08349 —-0.55 —-1.41 -1.30 —0.10422 -0.41 -0.57 -0.62
5 7..(0.25h) 0.50909 -9.86 -27.92 -28.18 7..(0.25h) 0.26478 8.79 10.16 11.75
10 0.61103 -3.64 -9.75 -8.19 0.29420 2.25 2.58 295
20 0.64961 -1.03 -2.72 -2.10 0.30246 0.57 0.65 0.74
40 0.66079 —-0.26 -0.70 —-0.53 0.30459 0.14 0.16 0.18
5 7,.(—0.25h)  —0.50909 -9.86 -27.92 -28.18 7,.(0.25h)  —0.41447 7.09 7.63 8.13
10 —-0.61103 -3.64 -9.75 -8.19 —-0.44710 1.82 1.95 2.06
20 —0.64961 -1.03 -2.72 -2.10 —0.45608 0.46 0.49 0.52

40 -0.66079 -0.26 -0.70 -0.53 —-0.45839 0.11 0.12 0.13
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Table 6
Exact results and % error of HZIGT, ZIGT and FSDT for square plate (d)

S Load case 1 Load case 2

Exact HZIGT ZIGT FSDT Exact HZIGT ZIGT FSDT
5 w(—0.5h) —-2.28600 -7.10 —-100.00  —100.00  w(—0.5h) 1.60700 -7.88 -39.74  -41.56
10 —0.65442 —6.64 —-100.00  —100.00 1.10750 -2.89 -14.69 -14.99
20 —-0.16992 —-6.51 —-100.00  —100.00 0.98211 -0.82 —4.16 -4.18
40 —0.04290 —-6.49 —-100.00  —100.00 0.95099 -0.21 -1.08 -1.08
5 w(0.5h) 2.28600 -7.10 -100.00  -100.00  w(0) 0.78872 -0.53 22.77 19.07
10 0.65442 —6.64 —-100.00  —100.00 0.89909 -0.13 5.09 4.72
20 0.16992 —-6.51 —-100.00  —100.00 0.92977 -0.03 1.23 1.21
40 0.04290 —-6.49 —-100.00  -100.00 0.93789  -0.01 0.31 0.31
5 G, (—0.5h) 0.79731 0.00 —-13.67 -13.67  G.(0.45h7) —0.64546 0.04 —-0.05 —-0.02
10 0.80447 -0.02 -3.92 -3.92 —0.64855 0.01 —-0.01 —-0.03
20 0.80683 —-0.01 -1.02 -1.02 —0.64870 0.00 0.00 —-0.02
40 0.80747 0.00 —-0.26 —-0.26 —0.64862 0.00 0.00 0.00
5 @,(—0.451™) 0.85798 -1.13 —-10.58 -10.58  5,(0.5h) —-0.93567 0.19 0.52 0.38
10 0.82197 -0.34 -3.19 -3.19 —0.94107 0.05 0.13 0.09
20 0.81120 —-0.09 —-0.84 —-0.84 —0.94321 0.01 0.03 0.03
40 0.80837 —-0.02 -0.21 —-0.21 —0.94389 0.00 0.01 0.01
5 Ty (—0.5h) —-0.06793 -1.74 -16.88 -16.88 7., (—0.5h) 0.05129 -1.81 -5.90 -5.52
10 —-0.06332 -0.52 -5.20 -5.20 0.04909 -0.47 -1.56 -1.33
20 —-0.06196 -0.14 -1.38 -1.38 0.04849 -0.12 -0.39 -0.32
40 —-0.06161 —-0.04 —-0.35 —-0.35 0.04833  —0.03 —-0.10 —-0.08
5 T..(—0.45h) —-0.12147 0.12 -1.87 -1.88  7.(—-0.45h) 0.08171 0.15 -1.20 —4.67
10 —-0.13215 0.02 —-0.51 —-0.51 0.08904 0.05 —-0.50 —-0.59
20 —-0.13539 0.00 —-0.13 —-0.13 0.09382 0.02 —-0.15 0.08
40 —0.13624 0.00 —-0.03 —-0.03 0.09558 0.01 —-0.04 0.05
5 7,.(—0.45h) 0.12851 0.29 2.05 205  7,.(-0.45n) —-0.11607 0.25 0.59 0.39
10 0.13383 0.07 0.57 0.57 -0.11727 0.06 0.14 0.09
20 0.13544 0.01 0.14 0.14 —-0.11771 0.01 0.03 0.03
40 0.13586 0.00 0.04 0.04 —0.11784 0.00 0.01 0.01

equal temperature rise of the top and bottom surfaces of the plate and with equal rise and fall of tem-
perature of these surfaces. The temperature profiles across the thickness are based on the heat conduction
equation. A benchmark test plate, symmetric and anti-symmetric composite plates and sandwich plates are
analysed to cover a wide range of temperature profiles across the thickness. It is concluded from the
comparative study that the existing ZIGT results are only marginally better (in some cases marginally
worse) than those of the FSDT for thermal analysis. The errors are particularly large for deflection even for
thin plates with S = 20. These theories should not be used for moderately thick plates with S = 10 and even
for some thin plates with S = 20 in which the errors are significant. The present HZIGT yields more
accurate results for the deflection and the stresses with few exceptions. The present HZIGT may be used for
all types of plates and thermal loadings with small error for S > 10. The new theory generally reproduces
quite well the thickness distributions of the inplane normal as well as transverse normal and shear stresses
and the transverse displacement for moderately thick plates with relatively small error. The new theory
developed herein is more accurate and yet as efficient as the existing zigzag theory and the FSDT, since it is
formulated in terms of only five primary displacements. Like TOT and many other HOTs, the finite element
implementation of the present theory will require C!-continuity of the shape functions which prevents
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simple element formulations. This can, however, be avoided by using the discrete Kirchhoff technique (Cho
et al., 2003).
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